ÌâÄ¿ÄÚÈÝ
3£®ÔÚÒ»´Î¶Ôij°à42ÃûѧÉú²Î¼Ó¿ÎÍâÀºÇò¡¢ÅÅÇòÐËȤС×飨ÿÈ˲μÓÇÒÖ»²Î¼ÓÒ»¸öÐËȤС×飩Çé¿öµ÷²éÖУ¬¾Í³¼ÆµÃµ½ÈçÏÂ2¡Á2ÁÐÁª±í£º£¨µ¥Î»£ºÈË£©ÀºÇò | ÅÅÇò | ×Ü¼Æ | |
ÄÐͬѧ | 16 | 6 | 22 |
Ůͬѧ | 8 | 12 | 20 |
×Ü¼Æ | 24 | 18 | 42 |
£¨2£©Çë¸ù¾ÝÊý¾Ý»³öÁÐÁª±íµÄµÈ¸ßÌõÐÎͼ£¬²¢Í¨¹ýÌõÐÎͼÅжϲμӡ°ÀºÇòС×顱»ò¡°ÅÅÇòС×顱ÓëÐÔ±ðÊÇ·ñÓйأ¿
£¨3£©Çë¸ù¾ÝÌâÖÐÊý¾Ý£¬ÅжÏÊÇ·ñÓÐ95%µÄ°ÑÎÕÈÏΪ²Î¼Ó¡°ÀºÇòС×顱»ò¡°ÅÅÇòС×顱ÓëÐÔ±ðÓйأ¿
ÏÂÃæÁÙ½çÖµ±í¹©²Î¿¼£º
P£¨k2¡Ýk0£© | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k2 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
·ÖÎö £¨1£©¸ù¾Ý2¡Á2ÁÐÁª±í£¬¹À¼Æ¸Ã°àͬѧÖУ¬²Î¼ÓÅÅÇòÐËȤС×éµÄͬѧµÄ±ÈÀý£»
£¨2£©¸ù¾ÝÊý¾Ý»³öÁÐÁª±íµÄµÈ¸ßÌõÐÎͼ£¬¼´¿ÉÅжϲμӡ°ÀºÇòС×顱»ò¡°ÅÅÇòС×顱ÓëÐÔ±ðÊÇ·ñÓйأ»
£¨3£©Çó³ök2£¬ÓëÁÙ½çÖµ±È½Ï£¬¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð ½â£º£¨1£©¸Ã°à¹²42ÈË£¬²Î¼ÓÅÅÇòÐËȤС×éµÄÓÐ18ÈË£¬ËùÒÔ±ÈÀý$\frac{18}{42}=\frac{3}{7}$-------------------£¨4·Ö£©£»
£¨2£©Èçͼ£¬
²Î¼Ó¡°ÀºÇòС×顱»ò¡°ÅÅÇòС×顱ÓëÐÔ±ðÓйØ--------------------------------£¨8·Ö£©
£¨3£©k2=$\frac{504}{110}¡Ö4.582£¾3.841$£¬
ËùÒÔÓÐ95%µÄ°ÑÎÕÈÏΪ²Î¼Ó¡°ÀºÇòС×顱»ò¡°ÅÅÇòС×顱ÓëÐÔ±ðÓйØ--£¨12·Ö£©
µãÆÀ ±¾Ì⿼²é·ÖÀà±äÁ¿µÄ¶ÀÁ¢ÐÔ¼ìÑ飬µÈ¸ßÌõÐÎͼµÈ£¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊÇÖеÈÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
17£®2005ÄêijÊеĿÕÆøÖÊÁ¿×´¿ö·Ö²¼Èç±í£º
ÆäÖÐX¡Ü50ʱ£¬¿ÕÆøÖÊÁ¿ÎªÓÅ£¬50¡ÜX¡Ü100ʱ¿ÕÆøÖÊÁ¿ÎªÁ¼£¬100¡ÜX¡Ü150ʱ£¬¿ÕÆøÖÊÁ¿ÎªÇá΢ÎÛȾ£®
£¨1£©ÇóE£¨X£©µÄÖµ£»
£¨2£©Çó¿ÕÆøÖÊÁ¿´ïµ½ÓÅ»òÁ¼µÄ¸ÅÂÊ£®
ÎÛȾָÊýX | 30 | 60 | 100 | 110 | 130 | 140 |
P | $\frac{1}{10}$ | $\frac{1}{6}$ | $\frac{1}{3}$ | $\frac{7}{30}$ | $\frac{2}{15}$ | $\frac{1}{30}$ |
£¨1£©ÇóE£¨X£©µÄÖµ£»
£¨2£©Çó¿ÕÆøÖÊÁ¿´ïµ½ÓÅ»òÁ¼µÄ¸ÅÂÊ£®
8£®Èôº¯Êýf£¨x£©=loga£¨$\frac{{x}^{2}+a}{x}$£©ÓÐ×îСֵ1£¬ÔòaµÈÓÚ£¨¡¡¡¡£©
A£® | $\frac{1}{4}$ | B£® | $\frac{1}{2}$ | C£® | 2 | D£® | 4 |
15£®Éèa£¬bΪÕýÊý£¬ÇÒa£¼b£¬¼Ç$P=\frac{a}{b}$£¬$Q=\frac{a+m}{b+m}$£¨m£¾0£©£¬Ôò£¨¡¡¡¡£©
A£® | P=Q | B£® | P£¾Q | ||
C£® | P£¼Q | D£® | P£¬Q´óС¹Øϵ²»È·¶¨ |
11£®ÒÑÖª¸´Êýz=1+i£¬iΪÐéÊýµ¥Î»£¬Ôòz2=£¨¡¡¡¡£©
A£® | 2+2i | B£® | 2i | C£® | 2-2i | D£® | -2i |
11£®ÔÚʵÊý·¶Î§ÄÚ£¬ÏÂÁв»µÈ¹Øϵ²»ºã³ÉÁ¢µÄÊÇ£¨¡¡¡¡£©
A£® | x2¡Ý0 | B£® | a2+b2¡Ý2ab | C£® | x+1£¾x | D£® | |x+1|£¾|x| |