题目内容
【题目】图1是某斜拉式大桥图片,为了了解桥的一些结构情况,学校数学兴趣小组将大桥的结构进行了简化,取其部分可抽象成图2所示的模型,其中桥塔、与桥面垂直,通过测量得知,,当为中点时,.
(1)求的长;
(2)试问在线段的何处时,达到最大.
图1 |
【答案】(1);(2)时,最大.
【解析】
试题(1)根据题意这实质上是一个解三角形问题,由条件可想到在两直角三角形中引入正切,即可得,,由两角和的正切公式可得,即可求得得;(2)要求根据题意可转化为求,在两直角三角形中可得,,根据三角的关系即可得到,这样即可得到一个分式函数,利用函数的知识可想到换元,即令,则,可得:,最后利用不等式的知识求出最值.
(1)设,,,则,,
由题意得,,解得. 6分
(2)设,则,,
, 8分
,,即为锐角,
令,则,
,
, 12分
当且仅当即,
时,最大. 14分
【题目】某商场营销人员进行某商品M市场营销调查发现,每回馈消费者一定的点数,该商品每天的销量就会发生一定的变化,经过试点统计得到以下表:
反馈点数 | 1 | 2 | 3 | 4 | 5 |
销量(百件)/天 | 0. 5 | 0. 6 | 1 | 1. 4 | 1. 7 |
(1)经分析发现,可用线性回归模型拟合当地该商品销量(百件)与返还点数之间的相关关系. 请用最小二乘法求关于的线性回归方程,并预测若返回6个点时该商品每天销量;
(2)若节日期间营销部对商品进行新一轮调整. 已知某地拟购买该商品的消费群体十分庞大,经营销调研机构对其中的200名消费者的返点数额的心理预期值进行了一个抽样调查,得到如下一份频数表:
返还点数预期值区间(百分比) | ||||||
频数 | 20 | 60 | 60 | 30 | 20 | 10 |
(ⅰ)求这200位拟购买该商品的消费者对返点点数的心理预期值的样本平均数及中位数的估计值(同一区间的预期值可用该区间的中点值代替;估计值精确到0. 1);
(ⅱ)将对返点点数的心理预期值在和的消费者分别定义为“欲望紧缩型”消费者和“欲望膨胀型”消费者,现采用分层抽样的方法从位于这两个区间的30名消费者中随机抽取6名,再从这6人中随机抽取2名进行跟踪调查,设抽出的2人中,至少有一个人是“欲望膨胀型”消费者的概率是多少?
参考公式及数据:①,;②.