题目内容
【题目】统计学中将个数的和记作
(1)设,求;
(2)是否存在互不相等的非负整数,,使得成立,若存在,请写出推理的过程;若不存在请证明;
(3)设是不同的正实数,,对任意的,都有,判断是否为一个等比数列,请说明理由.
【答案】(1)79;(2)不存在,证明详见解析;(3)是等比数列,理由详见解析.
【解析】
(1)代值计算结果.(2)距离2019最近的2的幂次为,而2019小于2048,所以,但是2048和2019的差不大,所以可以研究他们的差如何表示.(3)利用数学归纳法证明.
(1)因为,所以
所以
(2)因为,
又,所以中最大可能是10,
因为,
所以
又,
所以必有·
又因为,所以
所以必然存在某几项,其中,
只有,
所以存在这样互不相等的非负整数,,
使得成立。
(3)数学归纳法证明:
当,代入,
化简得所以成等比数列
假设当时成等比数列,是不同的正实数
记,设
化简整理得:
去分母同乘以得
整理
因为
得,从而,
所以时是等比数列
练习册系列答案
相关题目