题目内容
【题目】某商场营销人员进行某商品M市场营销调查发现,每回馈消费者一定的点数,该商品每天的销量就会发生一定的变化,经过试点统计得到以下表:
反馈点数 | 1 | 2 | 3 | 4 | 5 |
销量(百件)/天 | 0. 5 | 0. 6 | 1 | 1. 4 | 1. 7 |
(1)经分析发现,可用线性回归模型拟合当地该商品销量(百件)与返还点数之间的相关关系. 请用最小二乘法求关于的线性回归方程,并预测若返回6个点时该商品每天销量;
(2)若节日期间营销部对商品进行新一轮调整. 已知某地拟购买该商品的消费群体十分庞大,经营销调研机构对其中的200名消费者的返点数额的心理预期值进行了一个抽样调查,得到如下一份频数表:
返还点数预期值区间(百分比) | ||||||
频数 | 20 | 60 | 60 | 30 | 20 | 10 |
(ⅰ)求这200位拟购买该商品的消费者对返点点数的心理预期值的样本平均数及中位数的估计值(同一区间的预期值可用该区间的中点值代替;估计值精确到0. 1);
(ⅱ)将对返点点数的心理预期值在和的消费者分别定义为“欲望紧缩型”消费者和“欲望膨胀型”消费者,现采用分层抽样的方法从位于这两个区间的30名消费者中随机抽取6名,再从这6人中随机抽取2名进行跟踪调查,设抽出的2人中,至少有一个人是“欲望膨胀型”消费者的概率是多少?
参考公式及数据:①,;②.
【答案】(1),2百件.(2)平均数为6,中位数为5.7;(ⅱ)
【解析】
(1)分别求出线性回归方程对应的,再根据公式求出,再由公式求出,即可求得;
(2)(i)采用加权平均公式求平均值即可;中位数即频数和为100位置对应返点预期值位置,预判在之间,结合公式进行求解即可;
(ⅱ)结合古典概型概率公式求解即可;
(1),
,
,,
则关于的线性回归方程为,当时,,即返回6个点时该商品每天销量约为2百件.
(2)(i)根据题意,这200位拟购买该商品的消费者对返回点数的心里预期值的平均值,及中位数的估计值分别为:,
中位数的估计值为
(ⅱ)由题可知,6人中“欲望紧缩型”消费者人数为:人,“欲望膨胀型”消费者人数为:人,则抽出的两人中至少有1人是“欲望膨胀型”消费者的概率是:
【题目】某种植基地将编号分别为1,2,3,4,5,6的六个不同品种的马铃薯种在如图所示的
A | B | C | D | E | F |
这六块实验田上进行对比试验,要求这六块实验田分别种植不同品种的马铃薯,若种植时要求编号1,3,5的三个品种的马铃薯中至少有两个相邻,且2号品种的马铃薯不能种植在A、F这两块实验田上,则不同的种植方法有 ( )
A. 360种 B. 432种 C. 456种 D. 480种