题目内容
已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数.
(1)求k的值;
(2)探究函数f(x)=ax+
(a、b是正常数)在区间
和
上的单调性(只需写出结论,不要求证明).并利用所得结论,求使方程f(x)-log4m=0有解的m的取值范围.
(1)求k的值;
(2)探究函数f(x)=ax+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800008396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800008819.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800024904.png)
(1)
;
(2)函数f(x)=ax+
(a、b是正常数)在区间
上为减函数,在区间
上为增函数;
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800039489.png)
(2)函数f(x)=ax+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800008396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800008819.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800024904.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800102445.png)
试题分析:(1)由已知函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800102495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800117303.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800133631.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800149594.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800164313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800164313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800180523.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800195459.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800211543.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800227770.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800008819.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800024904.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800258839.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240318002891107.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800289532.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240318003051116.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800102495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240318003051116.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240318003512621.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800367645.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800367432.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800383503.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800383503.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800195459.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800211543.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800461295.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800476723.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800492314.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800523366.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800461295.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800461295.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800570611.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800102445.png)
试题解析:(1)由函数f(x)是偶函数,可知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800601630.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240318006321100.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800648928.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800663727.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800679495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800695417.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800039489.png)
(注:利用
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800149594.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800039489.png)
(2)结论:函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800227770.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800008819.png)
在区间
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800024904.png)
由题意知,可先求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240318003051116.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240318008191434.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800383503.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800835431.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800866506.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800866506.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800882445.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800897514.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800913702.png)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800929593.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800960679.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800102445.png)
故要使方程
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800258839.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031801007337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800102445.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031800180523.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目