题目内容
已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数.
(1)求k的值;
(2)探究函数f(x)=ax+(a、b是正常数)在区间和上的单调性(只需写出结论,不要求证明).并利用所得结论,求使方程f(x)-log4m=0有解的m的取值范围.
(1)求k的值;
(2)探究函数f(x)=ax+(a、b是正常数)在区间和上的单调性(只需写出结论,不要求证明).并利用所得结论,求使方程f(x)-log4m=0有解的m的取值范围.
(1);
(2)函数f(x)=ax+ (a、b是正常数)在区间上为减函数,在区间上为增函数;.
(2)函数f(x)=ax+ (a、b是正常数)在区间上为减函数,在区间上为增函数;.
试题分析:(1)由已知函数的定义域为关于原点对称,又是偶函数,则可根据偶函数的定义(或者利用特殊值代入计算亦可,如),得到一个关于的方程,从而求出的值;(2)由函数在区间上为减函数,在区间上为增函数,结合是可知函数在区间上为单调递减函数,在区间上为单调递增函数.由题意知方程,即为方程,若使方程有解,则对数式的值要在函数的值域范围内,所以首先要求出函数的值域,对函数进行化归得,故原方程可化为,令,,则在区间上为减函数,在区间上为增函数,故函数的最小值为,即当,时函数的值,所以函数的值域为,从而可求出.
试题解析:(1)由函数f(x)是偶函数,可知.
∴.
即, 2分 , 4分
∴对一切恒成立.∴. 5分
(注:利用解出,亦可得满分)
(2)结论:函数 (a、b是正常数)在区间上为减函数,
在区间上为增函数. 6分
由题意知,可先求的值域,. 8分
设,又设,则,由定理,知在单调递减,在单调递增,所以, 11分
∵为增函数,由题意,只须,即
故要使方程有解,的取值范围为. 13分;4.复合函数值域.
练习册系列答案
相关题目