题目内容
【题目】设椭圆的右焦点为,右顶点为.已知,其中为原点, 为椭圆的离心率.
(1)求椭圆的方程及离心率的值;
(2)设过点的直线与椭圆交于点(不在轴上),垂直于的直线与交于点,与轴交于点.若,且,求直线的斜率的取值范围.
【答案】(1)椭圆的方程为. ;(2)
【解析】试题分析:(1)由椭圆方程可知,由已知得,∴,平方得,所以,又因为,∴,解得,所以,因此.所以,椭圆的方程为. . (2)因为直线过点,设直线的斜率为,由点斜式得直线的方程为,设,把直线的方程为与椭圆方程联立消去,得,因为2与点B的横坐标是此方程的两个根,用根于系数的关系得,代入直线的方程从而得. 由,得,设,求两向量的坐标。由(1)知, ,得向量坐标, . 所以,解得.因为直线与直线垂直,所以直线的斜率为,由直线的斜截式得直线的方程为.联立直线的方程与直线的方程,设,可解得点M的横坐标,在中,由大边对大角得,由两点间的距离公式得,化简得,即,解不等式可得,或.
试题解析:解:(1)设,∵ ,∴ ,
又,∴ , ,∴ ,
所以,因此.
所以,椭圆的方程为. .
(2)解:设直线的斜率为,则直线的方程为,设,
由方程组,消去,得,
解得,或,由题意得,从而.
由(1)知, ,设,有, .
由,得,所以,解得.因此直线的方程为.
设,由方程组,消去,解得,在中, ,即,化简得,即,解得,或.
所以,直线的斜率的取值范围为.
【题目】某学校为倡导全体学生为特困学生捐款,举行“一元钱,一片心,诚信用水”活动,学生在购水处每领取一瓶矿泉水,便自觉向捐款箱中至少投入一元钱。现统计了连续5天的售出和收益情况,如下表:
售出水量x(单位:箱) | 7 | 6 | 6 | 5 | 6 |
收益y(单位:元) | 165 | 142 | 148 | 125 | 150 |
(Ⅰ) 若x与y成线性相关,则某天售出8箱水时,预计收益为多少元?
(Ⅱ) 期中考试以后,学校决定将诚信用水的收益,以奖学金的形式奖励给品学兼优的特困生,规定:特困生考入年级前200名,获一等奖学金500元;考入年级201—500 名,获二等奖学金300元;考入年级501名以后的特困生将不获得奖学金。甲、乙两名学生获一等奖学金的概率均为,获二等奖学金的概率均为,不获得奖学金的概率均为.
⑴在学生甲获得奖学金条件下,求他获得一等奖学金的概率;
⑵已知甲、乙两名学生获得哪个等第的奖学金是相互独立的,求甲、乙两名学生所获得奖学金总金额X 的分布列及数学期望。
附: , 。