题目内容

【题目】在锐角三角形ABC中,角A,B,C的对边分别为a,b,c,且acosC,bcosB,ccosA成等差数列.
(1)求角B的大小;
(2)求2sin2A+cos(A﹣C)的取值范围.

【答案】
(1)解: ∵2bcosB=acosC+ccosA,∴2sinBcosB=sinAcosC+cosAsinC.

∴2sinBcosB=sin(A+C),又∵A+C=π﹣B0<B<π,

,即


(2)解: 由(1)得: ,△ABC为锐角三角形,

,∴

=

即2sin2A+cos(A﹣C)


【解析】(1)利用正弦定理、等差数列的定义和性质以及诱导公式可得 ,由此求得角B的大小.(2)三角函数的恒等变换把要求的式子化为 ,根据角A的范围,求出
范围.
【考点精析】本题主要考查了等差数列的性质的相关知识点,需要掌握在等差数列{an}中,从第2项起,每一项是它相邻二项的等差中项;相隔等距离的项组成的数列是等差数列才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网