题目内容

【题目】数列{an}的前n项和为Sn , 若对于任意的正整数n都有Sn=2an﹣3n.
(1)设bn=an+3,求证:数列{bn}是等比数列,并求出{an}的通项公式;
(2)求数列{nan}的前n项和.

【答案】
(1)解:∵Sn=2an﹣3n,对于任意的正整数都成立,

∴Sn+1=2an+1﹣3n﹣3,

两式相减,得a n+1=2an+1﹣2an﹣3,即an+1=2an+3,

∴an+1+3=2(an+3),

所以数列{bn}是以2为公比的等比数列,

由已知条件得:S1=2a1﹣3,a1=3.

∴首项b1=a1+3=6,公比q=2,

∴an=62n1﹣3=32n﹣3


(2)解:∵nan=3×n2n﹣3n

∴Sn=3(12+222+323+…+n2n)﹣3(1+2+3+…+n),

2Sn=3(122+223+324+…+n2n+1)﹣6(1+2+3+…+n),

∴﹣Sn=3(2+22+23+…+2n﹣n2n+1)+3(1+2+3+…+n)

=

∴Sn=


【解析】(1)通过递推关系式求出an与an+1的关系,推出{an+3}即数列{bn}是等比数列,求出数列{bn}的通项公式即可求出{an}的通项公式;(2)写出数列{nan}的通项公式,然后写出前n项和的表达式通过错位相减法求解即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网