题目内容
【题目】数列{an}的前n项和为Sn , 若对于任意的正整数n都有Sn=2an﹣3n.
(1)设bn=an+3,求证:数列{bn}是等比数列,并求出{an}的通项公式;
(2)求数列{nan}的前n项和.
【答案】
(1)解:∵Sn=2an﹣3n,对于任意的正整数都成立,
∴Sn+1=2an+1﹣3n﹣3,
两式相减,得a n+1=2an+1﹣2an﹣3,即an+1=2an+3,
∴an+1+3=2(an+3),
所以数列{bn}是以2为公比的等比数列,
由已知条件得:S1=2a1﹣3,a1=3.
∴首项b1=a1+3=6,公比q=2,
∴an=62n﹣1﹣3=32n﹣3
(2)解:∵nan=3×n2n﹣3n
∴Sn=3(12+222+323+…+n2n)﹣3(1+2+3+…+n),
2Sn=3(122+223+324+…+n2n+1)﹣6(1+2+3+…+n),
∴﹣Sn=3(2+22+23+…+2n﹣n2n+1)+3(1+2+3+…+n)
=
∴Sn=
【解析】(1)通过递推关系式求出an与an+1的关系,推出{an+3}即数列{bn}是等比数列,求出数列{bn}的通项公式即可求出{an}的通项公式;(2)写出数列{nan}的通项公式,然后写出前n项和的表达式通过错位相减法求解即可.
练习册系列答案
相关题目