题目内容
【题目】已知函数,其中
(1)当时,求曲线在点处的切线方程;
(2)若函数存在最小值,求证:.
【答案】(1)(2)证明见解析
【解析】
(1)将代入函数,对函数求导,将代入导函数求斜率,将代入原函数求切点,最后用点斜式求曲线在点处的切线方程;
(2)先求导得,讨论当时,恒成立,则在单调递增,无最小值.当时,令得或(舍)
分别讨论时和 时的单调性,得出所以存在最小值,.再对新函数求导,根据单调性即可得出最大值为,则得证.
解:(1)时,
切线斜率
曲线在点处的切线方程为:
即:
(2)
①当时,恒成立
在单调递增,无最小值
②当时,由得或(舍)
时,,在单调递减
时,,在单调递增
所以存在最小值,
下面证明.
设函数
由得,易知在单调递增,在单调递减
所以的最大值为
所以恒成立,得证.
【题目】为了调查某款电视机的寿命,研究人员对该款电视机进行了相应的测试,将得到的数据分组:,,,,,并统计如图所示:
并对不同性别的市民对这款电视机的购买意愿作出调查,得到的数据如下表所示:
愿意购买该款电视机 | 不愿意购买该款电视机 | 总计 | |
男性 | 800 | 1000 | |
女性 | 600 | ||
总计 | 1200 |
(1)根据图中的数据,试估计该款电视机的平均寿命;
(2)根据表中数据,能否在犯错误的概率不超过0.001的前提下认为“是否愿意购买该款电视机”与“市民的性别”有关;
(3)以频率估计概率,若在该款电视机的生产线上随机抽取4台,记其中寿命不低于4年的电视机的台数为X,求X的分布列及数学期望.
参考公式及数据:,其中.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
【题目】某工厂的,,三个不同车间生产同一产品的数量(单位:件)如下表所示.质检人员用分层抽样的方法从这些产品中共抽取6件样品进行检测:
车间 | |||
数量 | 50 | 150 | 100 |
(1)求这6件样品中来自,,各车间产品的数量;
(2)若在这6件样品中随机抽取2件进行进一步检测,求这2件产品来自相同车间的概率.