ÌâÄ¿ÄÚÈÝ
4£®Èç±íÊÇij³§Éú²úij²úÆ·¹ý³ÌÖмǼµÄ²úÁ¿x£¨¶Ö£©ÓëÏàÓ¦µÄÉú²úÄܺÄy£¨¶Ö£©±ê׼úµÄ¼¸×éͳ¼ÆÊý¾Ý£ºx | 3 | 4 | 5 | 6 | 7 |
y | 5.8 | 8.2 | 9.7 | 12.2 | 14.1 |
£¨2£©ÅжϱäÁ¿xÓëyÖ®¼äÊÇÕýÏà¹Ø»¹ÊǸºÏà¹Ø£¬²¢¹À¼Æ²úÁ¿Îª20¶Öʱ£¬Éú²úÄܺÄΪ¶àÉÙ¶Ö±ê׼ú£¿
²Î¿¼ÊýÖµ£º3¡Á5.8+4¡Á8.2+5¡Á9.7+6¡Á12.2+7¡Á14.1=270.6£®
·ÖÎö £¨1£©¸ù¾ÝËù¸øµÄÕâ×éÊý¾ÝÇó³öÀûÓÃ×îС¶þ³Ë·¨ËùÐèÒªµÄ¼¸¸öÊý¾Ý£¬´úÈëÇóϵÊý$\hat{b}$µÄ¹«Ê½£¬ÇóµÃ½á¹û£¬ÔÙ°ÑÑù±¾ÖÐÐĵã´úÈ룬Çó³ö$\hat{a}$µÄÖµ£¬µÃµ½ÏßÐԻع鷽³Ì£®
£¨2£©¸ù¾ÝÉÏÒ»ÎÊËùÇóµÄÏßÐԻع鷽³Ì£¬ÓɻعéϵÊý£¬¿ÉÖªÕýÏà¹Ø»¹ÊǸºÏà¹Ø£¬°Ñx=20´úÈëÏßÐԻع鷽³Ì£¬Ô¤²âÉú²ú20¶Öʱ£¬Éú²úÄܺÄΪ¶àÉÙ¶Ö±ê׼ú£®
½â´ð ½â£º£¨1£©¡ß$\overline{x}$=$\frac{1}{5}$£¨3+4+5+6+7£©=5£¨¶Ö£©£¬$\overline{y}$=$\frac{1}{5}$£¨5.8+8.2+9.7+12.2+14.1£©=10£¨¶Ö£©£¬
$\sum _{i=1}^{5}$xiyi=3¡Á5.8+4¡Á8.2+5¡Á9.7+6¡Á12.2+7¡Á14.1=270.6£¬
$\sum _{i=1}^{5}$xi2=9+16+25+36+49=135£¬
¡à$\hat{b}$=$\frac{270.6-5•5•10}{135-5•5•5}$=2.06£¬
¡à$\hat{a}$=10-2.06¡Á5=-0.3£¬
¡ày¹ØÓÚxµÄ»Ø¹é·½³ÌΪ$\widehat{y}$=2.06x-0.3£»
£¨2£©ÓÉ£¨1£©ÖÐy¹ØÓÚxµÄ»Ø¹é·½³ÌΪ$\widehat{y}$=2.06x-0.3£¬
2.06£¾0£¬¹ÊxÓëyÖ®¼äÊÇÕýÏà¹Ø£¬
µ±x=20ʱ£¬$\widehat{y}$=2.06¡Á20-0.3=40.9£¬
¹Ê²úÁ¿Îª20¶Öʱ£¬Éú²úÄܺÄԼΪ40.9¶Ö±ê׼ú£®
µãÆÀ ±¾Ì⿼²éÏßÐԻع鷽³ÌµÄÇ󷨣¬¿¼²é×îС¶þ³Ë·¨£¬ÊÇÒ»¸ö»ù´¡Ì⣬½âÌâʱÔËËãÁ¿±È½Ï´ó£¬×¢ÒâÀûÓù«Ê½ÇóϵÊýʱ£¬²»ÒªÔÚÔËËãÉϳö´í£®ÊôÓÚÖеµÌ⣮
A£® | 1 | B£® | $\sqrt{2}$ | C£® | 2 | D£® | 4 |
ÇÒ$\overrightarrow{AB}$•$\overrightarrow{BC}$=$\frac{{¦Ð}^{2}}{8}$-8£®Ôòf£¨x£©µÄ½âÎöʽΪ£¨¡¡¡¡£©
A£® | f£¨x£©=2sin£¨2x+$\frac{¦Ð}{3}$£© | B£® | f£¨x£©=2sin£¨2x+$\frac{¦Ð}{6}$£© | C£® | f£¨x£©=2sin£¨3x+$\frac{¦Ð}{3}$£© | D£® | f£¨x£©=2sin£¨3x+$\frac{¦Ð}{6}$£© |
A£® | $\frac{\sqrt{3}}{3}$ | B£® | 1 | C£® | $\sqrt{3}$ | D£® | $\frac{\sqrt{2}}{2}$ |
A£® | 12 | B£® | 32 | C£® | -32 | D£® | 48 |
A£® | ¼òµ¥Ëæ»ú³éÑù | |
B£® | ϵͳ³éÑù | |
C£® | ·Ö²ã³éÑù | |
D£® | ÏÈ´ÓÖÐÄêÈËÖÐËæ»úÌÞ³ý1ÈË£¬ÔÙÓ÷ֲã³éÑù |