题目内容
设数列{an}的前n项和为Sn,已知ban-2n=(b-1)Sn.
(1)证明:当b=2时,{an-n·2n-1}是等比数列;
(2)求{an}的通项公式.
(1)证明:当b=2时,{an-n·2n-1}是等比数列;
(2)求{an}的通项公式.
(1)见解析(2)an=![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240343175321520.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240343175321520.png)
由题意知a1=2,且ban-2n=(b-1)Sn,ban+1-2n+1=(b-1)Sn+1,
两式相减得b(an+1-an)-2n=(b-1)an+1,
即an+1=ban+2n.①
(1)证明 当b=2时,由①知an+1=2an+2n,
于是an+1-(n+1)·2n=2an+2n-(n+1)·2n=2(an-n·2n-1),
又a1-1·21-1=1≠0,所以{an-n·2n-1}是首项为1,公比为2的等比数列.
(2)当b=2时,由(1)知an-n·2n-1=2n-1,即an=(n+1)·2n-1;当b≠2时,由①得,an+1-
·2n+1=ban+2n-
·2n+1=ban-
·2n=b
,因此an+1-
·2n+1=b
=
·bn,
得an=![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240343175321520.png)
两式相减得b(an+1-an)-2n=(b-1)an+1,
即an+1=ban+2n.①
(1)证明 当b=2时,由①知an+1=2an+2n,
于是an+1-(n+1)·2n=2an+2n-(n+1)·2n=2(an-n·2n-1),
又a1-1·21-1=1≠0,所以{an-n·2n-1}是首项为1,公比为2的等比数列.
(2)当b=2时,由(1)知an-n·2n-1=2n-1,即an=(n+1)·2n-1;当b≠2时,由①得,an+1-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034317548447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034317548447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034317579466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034317595922.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034317548447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034317595922.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034317641652.png)
得an=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240343175321520.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目