题目内容
在数列{an}中,a1=1,{an}的前n项和Sn满足2Sn=an+1.
(1)求数列{an}的通项公式;
(2)若存在n∈N*,使得λ≤
,求实数λ的最大值.
(1)求数列{an}的通项公式;
(2)若存在n∈N*,使得λ≤
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034406703646.png)
(1) an=
(2) 3
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034406735972.png)
(1)由题意,当n≥2时,2Sn-1=an,2Sn=an+1,
两式相减得2an=an+1-an,
即an+1=3an,又a2=2a1=2,
可见数列{an}从第二项起成公比为3的等比数列.
所以当n≥2时,an=a2·3n-2=2·3n-2,
故an=![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034406735972.png)
(2)令bn=
,当n≥2时,bn=![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034406781782.png)
当n≥2时,bn+1-bn=
-
=
=
<0.
所以当n≥2时,bn+1<bn
所以,数列{bn}从第二项起的各项成单调递减数列
而b2=
=3,b1=
=2,
由题意,λ≤
max=max{2,3}=3.
所求实数λ的最大值是3.
两式相减得2an=an+1-an,
即an+1=3an,又a2=2a1=2,
可见数列{an}从第二项起成公比为3的等比数列.
所以当n≥2时,an=a2·3n-2=2·3n-2,
故an=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034406735972.png)
(2)令bn=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034406703646.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034406781782.png)
当n≥2时,bn+1-bn=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034406797876.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034406781782.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240344068281044.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034406844988.png)
所以当n≥2时,bn+1<bn
所以,数列{bn}从第二项起的各项成单调递减数列
而b2=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034406859596.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034406875501.png)
由题意,λ≤
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034406875752.png)
所求实数λ的最大值是3.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目