题目内容
【题目】在平面直角坐标系中,已知椭圆的离心率为,点在椭圆上.
(1)求椭圆的方程;
(2)设直线与圆相切,与椭圆相交于两点,求证:是定值.
【答案】(1);(2)见解析
【解析】
(1)利用离心率可得,进而得到;将点代入椭圆方程可求得,从而得到椭圆方程;
(2)①当直线斜率不存在时,可求得坐标,从而得到,得到;②当直线斜率存在时,设直线方程为,由直线与圆相切可得到;将直线方程与椭圆方程联立可得到韦达定理的形式,从而表示出,整理可得,得到;综合两种情况可得到结论.
(1)由题意得:,即 椭圆方程为
将代入椭圆方程得:
椭圆的方程为:
(2)①当直线斜率不存在时,方程为:或
当时,,,此时
当时,同理可得
②当直线斜率存在时,设方程为:,即
直线与圆相切 ,即
联立得:
设, ,
代入整理可得:
综上所述:为定值
练习册系列答案
相关题目
【题目】世界卫生组织的最新研究报告显示,目前中国近视患者人数多达6亿,高中生和大学生的近视率均已超过七成,为了研究每周累计户外暴露时间(单位:小时)与近视发病率的关系,对某中学一年级200名学生进行不记名问卷调查,得到如下数据:
每周累积户外暴露时间(单位:小时) | 不少于28小时 | ||||
近视人数 | 21 | 39 | 37 | 2 | 1 |
不近视人数 | 3 | 37 | 52 | 5 | 3 |
(1)在每周累计户外暴露时间不少于28小时的4名学生中,随机抽取2名,求其中恰有一名学生不近视的概率;
(2)若每周累计户外暴露时间少于14个小时被认证为“不足够的户外暴露时间”,根据以上数据完成如下列联表,并根据(2)中的列联表判断能否在犯错误的概率不超过0.01的前提下认为不足够的户外暴露时间与近视有关系?
近视 | 不近视 | |
足够的户外暴露时间 | ||
不足够的户外暴露时间 |
附:
P | 0.050 | 0.010 | 0.001 |
3.841 | 6.635 | 10.828 |