题目内容

15.已知数列{an},a1=$\frac{1}{2}$,an+1=an2+an,且bn=$\frac{1}{{a}_{n}+1}$,Sn为bn的前n项和,求S2013+$\frac{1}{{a}_{2014}}$的值.

分析 an+1=an2+an,变形为$\frac{1}{{a}_{n+1}}=\frac{1}{{a}_{n}({a}_{n}+1)}$=$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n}+1}$,可得bn=$\frac{1}{{a}_{n}+1}$=$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$,利用“裂项求和”可得:列{bn}前n项和Sn,即可得出.

解答 解:∵an+1=an2+an
∴$\frac{1}{{a}_{n+1}}=\frac{1}{{a}_{n}({a}_{n}+1)}$=$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n}+1}$,
∴$\frac{1}{{a}_{n}+1}$=$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$.
∴bn=$\frac{1}{{a}_{n}+1}$=$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$,
∴数列{bn}前n项和Sn=$(\frac{1}{{a}_{1}}-\frac{1}{{a}_{2}})$+$(\frac{1}{{a}_{2}}-\frac{1}{{a}_{3}})$+…+$(\frac{1}{{a}_{n}}-\frac{1}{{a}_{n+1}})$
=$\frac{1}{{a}_{1}}$-$\frac{1}{{a}_{n+1}}$
=2-$\frac{1}{{a}_{n+1}}$,
∴S2013+$\frac{1}{{a}_{2014}}$=2-$\frac{1}{{a}_{2014}}$+$\frac{1}{{a}_{2014}}$=2.

点评 本题考查了“裂项求和”、递推式的应用,考查了变形能力、推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网