题目内容
已知向量a="(cos" α,sin α),b="(cos" β,sin β),0<β<α<π.
(1)若|a-b|=,求证:a⊥b;
(2)设c=(0,1),若a+b=c,求α,β的值.
(1)若|a-b|=,求证:a⊥b;
(2)设c=(0,1),若a+b=c,求α,β的值.
(1)见解析 (2) α=,β=
(1)证明:由|a-b|=得
(cosα-cos β)2+(sinα-sinβ)2=2,
即2-2cosαcosβ-2sinαsinβ=2,
∴cosαcosβ+sinαsinβ=0,
即a·b=0,
∴a⊥b.
(2)解:因为a+b=(cosα+cosβ,sin α+sinβ)=(0,1),
所以
由此得,cosα=cos(π-β),
由0<β<π,得0<π-β<π.
又0<α<π,
故α=π-β.
代入sinα+sinβ=1,得sinα=sinβ=,
而α>β,
所以α=,β=.
练习册系列答案
相关题目