题目内容
已知函数f(x)= (a>0,x>0).
(1)求证:f(x)在(0,+∞)上是增函数;
(2)若f(x)≤2x在(0,+∞)上恒成立,求a的取值范围;
(3)若f(x)在[m,n]上的值域是[m,n](m≠n),求a的取值范围.
(1)求证:f(x)在(0,+∞)上是增函数;
(2)若f(x)≤2x在(0,+∞)上恒成立,求a的取值范围;
(3)若f(x)在[m,n]上的值域是[m,n](m≠n),求a的取值范围.
(1)证明略 (2) a的取值范围是[,+∞)(3)0<a<
任取x1>x2>0,
f(x1)–f(x2)=
∵x1>x2>0,∴x1x2>0,x1–x2>0,
∴f(x1)–f(x2)>0,即f(x1)>f(x2),故f(x)在(0,+∞)上是增函数.
(2)解:∵≤2x在(0,+∞)上恒成立,且a>0,
∴a≥在(0,+∞)上恒成立,
令
(当且仅当2x=即x=时取等号),
要使a≥在(0,+∞)上恒成立,则a≥.
故a的取值范围是[,+∞).
(3)解: 由(1)f(x)在定义域上是增函数.
∴m=f(m),n=f(n),即m2–m+1=0,n2–n+1=0
故方程x2–x+1=0有两个不相等的正根m,n,注意到m·n=1,
故只需要Δ=()2–4>0,由于a>0,则0<a<.
f(x1)–f(x2)=
∵x1>x2>0,∴x1x2>0,x1–x2>0,
∴f(x1)–f(x2)>0,即f(x1)>f(x2),故f(x)在(0,+∞)上是增函数.
(2)解:∵≤2x在(0,+∞)上恒成立,且a>0,
∴a≥在(0,+∞)上恒成立,
令
(当且仅当2x=即x=时取等号),
要使a≥在(0,+∞)上恒成立,则a≥.
故a的取值范围是[,+∞).
(3)解: 由(1)f(x)在定义域上是增函数.
∴m=f(m),n=f(n),即m2–m+1=0,n2–n+1=0
故方程x2–x+1=0有两个不相等的正根m,n,注意到m·n=1,
故只需要Δ=()2–4>0,由于a>0,则0<a<.
练习册系列答案
相关题目