题目内容
12.若x,y满足约束条件$\left\{{\begin{array}{l}{x+y-5≤0}\\{2x-y-1≥0}\\{x-2y+1≤0}\end{array}}\right.$,则z=2x+y的最大值为8.分析 作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.
解答 解:作出不等式组对应的平面区域如图:(阴影部分ABC).
由z=2x+y得y=-2x+z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点A时,直线y=-2x+z的截距最大,
此时z最大.
由$\left\{\begin{array}{l}{x+y-5=0}\\{x-2y+1=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$,即A(3,2)
将A(3,2)的坐标代入目标函数z=2x+y,
得z=2×3+2=8.即z=2x+y的最大值为8.
故答案为:8.
点评 本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.
练习册系列答案
相关题目
7.若为a实数,且$\frac{2+ai}{1+i}$=3+i,则a=( )
A. | -4 | B. | -3 | C. | 3 | D. | 4 |
4.如图,在圆O中,M、N是弦AB的三等分点,弦CD,CE分别经过点M,N,若CM=2,MD=4,CN=3,则线段NE的长为( )
A. | $\frac{8}{3}$ | B. | 3 | C. | $\frac{10}{3}$ | D. | $\frac{5}{2}$ |