题目内容
【题目】如图,空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,且AB=AD,BC=DC.
(1)求证:∥平面EFGH;
(2)求证:四边形EFGH是矩形.
【答案】(1)见解析; (2)见解析.
【解析】
试题分析:(1)证明线面平行一般证明线线平行或面面平行,本题中利用中点产生的中位线得到的EH∥BD来证明 平面;(2)由四个中点可利用中位线性质证明四边形为平行四边形,利用等腰三角形三线合一的性质得到平面(BD中点为O)从而得到,所以四边形是矩形
试题解析:(1)∵E,H分别为AB, DA的中点.
∴EH∥BD,又平面EFGH,平面EFGH,
平面EFGH;
(2)取BD中点O,连续OA,OC.
∵AB=AD,BC=DC.∴AO⊥BD,CO⊥BD,
又AO∩CO=0.∴BD⊥平面AOC.
∴BD⊥AC.
∵E,F,G,H为AB,BC,CD,DA的中点.
∴EH∥BD,且EH=BD;FG∥BD,且FG=BD,EF∥AC.
∴EH∥FG,且EH=FG.∴四边形EFGH是平行四边形.
∵AC⊥BD,又EF∥AC,EH∥BD.∴EF⊥EH.∴四边形EFGH为矩形
练习册系列答案
相关题目
【题目】某市化工厂三个车间共有工人1 000名,各车间男、女工人数如下表:
第一车间 | 第二车间 | 第三车间 | |
女工 | 173 | 100 | y |
男工 | 177 | x | z |
已知在全厂工人中随机抽取1名,抽到第二车间男工的可能性是0. 15.
(1)求x的值;
(2)现用分层抽样的方法在全厂抽取50名工人,问应在第三车间抽取多少名?