题目内容
6.已知△ABC的内角A、B、C所对的边为a、b、c,则“ab>c2”是“C<$\frac{π}{3}$”的充分非必要条件.(填“充分非必要”、“必要非充分”、“充要”、“既不充分又不必要”中的一种).分析 由充分必要条件的定义和三角形的余弦定理,结合基本不等式,即可得到结论.
解答 解:ab>c2⇒cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$>$\frac{2ab-ab}{2ab}$=$\frac{1}{2}$⇒C<$\frac{π}{3}$,
由∠C<$\frac{π}{3}$,则cosC>$\frac{1}{2}$,
由余弦定理可得$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$>$\frac{1}{2}$,
(a-b)2-c2>-ab,
即为c2-ab<(a-b)2,
则推不出c2-ab<0,
即有“ab>c2”是“∠C<$\frac{π}{3}$”的充分非必要条件.
故答案为:充分非必要.
点评 本题主要考查了解三角形的知识,放缩法证明不等式的技巧,解三角形的余弦定理,同时考查充分必要条件的判断,属于基础题.
练习册系列答案
相关题目
16.已知A,B,C是△ABC的三内角,且满足2cosBcosC(1-tanBtanC)=1,则角A的大小为( )
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
11.如图所示,棱长皆相等的四面体S-ABC中,D为SC的中点,则BD与SA所成角的余弦值是( )
A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{\sqrt{2}}}{3}$ | C. | $\frac{{\sqrt{3}}}{6}$ | D. | $\frac{{\sqrt{2}}}{6}$ |
18.函数f(x)=ex+x2+2x+1的图象上任意点P到直线3x-y-2=0的距离的最小值为( )
A. | $\frac{{\sqrt{10}}}{5}$ | B. | $\frac{{3\sqrt{10}}}{20}$ | C. | $\frac{{3\sqrt{10}}}{10}$ | D. | $\frac{{2\sqrt{10}}}{5}$ |
15.已知集合A={x|x2-4=0},B={x|-1<x<3},则A∩B=( )
A. | {-2,2} | B. | (2,3) | C. | {2} | D. | (1,2) |
16.若a,b∈(1,+∞),则ab+1与a+b的大小关系是( )
A. | ab+1>a+b | B. | ab+1<a+b | C. | ab+1≥a+b | D. | ab+1≤a+b |