题目内容
【题目】已知椭圆的离心率为,且经过点
(1)求椭圆的方程;
(2)是否存在经过点的直线,它与椭圆相交于两个不同点,且满足为坐标原点)关系的点也在椭圆上,如果存在,求出直线的方程;如果不存在,请说明理由.
【答案】(1) ; (2)存在,
【解析】
(1)根据椭圆离心率为,得,将点代入椭圆方程,即可求解;
(2)分类讨论当斜率不存在时和斜率存在时直线是否满足题意,联立直线和椭圆的方程,结合韦达定理用点的坐标代入运算即可求解.
解:(1)由椭圆的离心率为,得,再由点在椭圆上,得
解得,所以椭圆的方程为.
(2)因为点在椭圆内部,经过点的直线与椭圆恒有两个交点,假设直线存在,
当斜率不存在时,经过点的直线的方程,与椭圆交点坐标为
或,
当时,
,
所以,,
点不在椭圆上;
当时,
,
同上可得:不在椭圆上,
所以直线不合题意;
当斜率存在时:设
,
设,由韦达定理得
因为点在椭圆上,因此得,
由,
由于点也在椭圆上,则
,整理得,
,即
所以
因此直线的方程为
练习册系列答案
相关题目