ÌâÄ¿ÄÚÈÝ
¹ã¶«Ä³Æ·ÅÆÍæ¾ßÆóÒµµÄ²úÆ·ÒÔÍùרÏúÅ·ÖÝÊг¡£¬ÔÚŷծΣ»úµÄÓ°ÏìÏ£¬Å·ÖÝÊг¡µÄÏúÁ¿Êܵ½ÑÏÖØÓ°Ï죬¸ÃÆóÒµÔÚÕþ¸®µÄ´óÁ¦·öÖúÏ»ý¼«¿ªÍعúÄÚÊг¡£¬Ö÷¶¯Í¶ÈëÄÚÏú²úÆ·µÄÑÐÖÆ¿ª·¢£¬²¢»ù±¾ÐγÉÁËÊг¡¹æÄ££¬×Ô2010Äê9ÔÂÒÔÀ´µÄµÚn¸öÔ£¨2010Äê9ÔÂΪÿһ¸öÔ£©£¬²úÆ·µÄÄÚÏúÁ¿¡¢³ö¿ÚÁ¿ºÍÏúÊÛ×ÜÁ¿£¨ÄÚÏúÁ¿Óë³ö¿ÚÁ¿µÄºÍ£©·Ö±ðΪbn¡¢cnºÍan£¨µ¥Î»Íò¼þ£©£¬·ÖÎöÏúÊÛͳ¼ÆÊý¾Ý·¢ÏÖÐγÉÈçÏÂÓªÏúÇ÷ÊÆ£ºbn£«1£½aan£¬cn£«1£½an£«ba£¨ÆäÖÐa¡¢bΪ³£Êý£©£¬ÇÒa1£½1Íò¼þ£¬a2£½1.5Íò¼þ£¬a3£½1.875Íò¼þ.
£¨1£©Çóa,bµÄÖµ£¬²¢Ð´³öan£«1ÓëanÂú×ãµÄ¹Øϵʽ£»
£¨2£©Èç¹û¸ÃÆóÒµ²úÆ·µÄÏúÊÛ×ÜÁ¿an³ÊÏÖµÝÔöÇ÷ÊÆ£¬ÇÒ¿ØÖÆÔÚ2Íò¼þÒÔÄÚ£¬ÆóÒµµÄÔË×÷Õý³£ÇÒ²»»á³öÏÖ×ʽðΣ»ú£»ÊÔÖ¤Ã÷£ºan£¼an£«1£¼2.
£¨3£©ÊÔÇó´Ó2010Äê9Ô·ÝÒÔÀ´µÄµÚn¸öÔµÄÏúÊÛ×ÜÁ¿an¹ØÓÚnµÄ±í´ïʽ.
£¨1£©Çóa,bµÄÖµ£¬²¢Ð´³öan£«1ÓëanÂú×ãµÄ¹Øϵʽ£»
£¨2£©Èç¹û¸ÃÆóÒµ²úÆ·µÄÏúÊÛ×ÜÁ¿an³ÊÏÖµÝÔöÇ÷ÊÆ£¬ÇÒ¿ØÖÆÔÚ2Íò¼þÒÔÄÚ£¬ÆóÒµµÄÔË×÷Õý³£ÇÒ²»»á³öÏÖ×ʽðΣ»ú£»ÊÔÖ¤Ã÷£ºan£¼an£«1£¼2.
£¨3£©ÊÔÇó´Ó2010Äê9Ô·ÝÒÔÀ´µÄµÚn¸öÔµÄÏúÊÛ×ÜÁ¿an¹ØÓÚnµÄ±í´ïʽ.
½â£º£¨1£©ÒÀÌâÒ⣺an£«1£½bn£«1£«cn£«1£½aan£«an£«ba£¬
ÓÖa2£½aa1£«a1£«ba£¬¡àa£«1£«b£½¡¡¡¡¡¡¡¡¢Ù
ÓÖa3£½aa2£«a2£«ba£¬¡à¡¡¡¡¢Ú
½â¢Ù¢ÚµÃa£½1£¬b£½£´Ó¶øan£«1£½2an£a(n¡ÊN*)¡¡¡¡¡¡¡¡¡¡¡£¨4·Ö£©
£¨2£©Ö¤·¨£¨¢ñ£©ÓÉÓÚan£«1£½2an£a£½£(an£2)2£«2¡Ü2.
µ«an£«1¡Ù2£¬·ñÔò¿ÉÍƵÃa1£½2Óëa1£½1ì¶Ü.¹Êan£«1£¼2£¬ÓÚÊÇan£¼2£¬
ÓÖan£«1£an£½£a£«2an£an£½£an(an£2)£¾0£¬
ËùÒÔan£«1£¾an£¬´Ó¶øan£¼an£«1£¼2.¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡£¨9·Ö£©
·½·¨£¨¢ò£©ÓÃÊýѧ¹éÄÉ·¨
£¨¢¡£©µ±n£½1ʱ£¬a1£½1£¬a2£½1.5£¬ÏÔÈ»a1£¼a2£¼2³ÉÁ¢£¬
£¨¢¢£©¼ÙÉèn£½kʱ£¬ak£¼ak£«1£¼2³ÉÁ¢.
ÓÉÓÚº¯Êýf(x)£½£x2£«2x£½£(x£2)2£«2ÔÚ£Û0,2£ÝÉÏΪÔöº¯Êý£¬
Ôòf(ak)£¼f(ak£«1)£¼f(2)¼´ak(4£ak)£¼ak£«1(4£ak£«1)£¼¡Á2¡Á(4£2)
¼´ak£«1£¼ak£«2£¼2³ÉÁ¢.×ÛÉϿɵÃn¡ÊN*ÓÐan£¼an£«1£¼2.¡¡¡¡¡¡¡¡¡¡¡¡£¨9·Ö£©
£¨3£©ÓÉan£«1£½2an£aµÃ2(an£«1£2)£½£(an£2)2£¬¼´(2£an£«1)£½(2£an)2£¬
ÓÖÓÉ£¨2£©Öªan£¼an£«1£¼2£¬¿ÉÖª2£an£«1£¾0£¬2£an£¾0£¬
Ôòlg(2£an£«1)£½2lg(2£an)£lg2£¬¡àlg(2£an£«1)£lg2£½2£Ûlg(2£an)£lg2£Ý
¼´{lg(2£an£«1)£lg2}ΪµÈ±ÈÊýÁУ¬¹«±ÈΪ2£¬Ê×ÏîΪlg(2£a1)£lg2£½£lg2
¹Êlg(2£an)£lg2£½(£lg2)¡¤2n£1£¬¡àan£½2£(n¡ÊN*)ΪËùÇó.¡¡¡¡¡£¨13·Ö£©
ÓÖa2£½aa1£«a1£«ba£¬¡àa£«1£«b£½¡¡¡¡¡¡¡¡¢Ù
ÓÖa3£½aa2£«a2£«ba£¬¡à¡¡¡¡¢Ú
½â¢Ù¢ÚµÃa£½1£¬b£½£´Ó¶øan£«1£½2an£a(n¡ÊN*)¡¡¡¡¡¡¡¡¡¡¡£¨4·Ö£©
£¨2£©Ö¤·¨£¨¢ñ£©ÓÉÓÚan£«1£½2an£a£½£(an£2)2£«2¡Ü2.
µ«an£«1¡Ù2£¬·ñÔò¿ÉÍƵÃa1£½2Óëa1£½1ì¶Ü.¹Êan£«1£¼2£¬ÓÚÊÇan£¼2£¬
ÓÖan£«1£an£½£a£«2an£an£½£an(an£2)£¾0£¬
ËùÒÔan£«1£¾an£¬´Ó¶øan£¼an£«1£¼2.¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡£¨9·Ö£©
·½·¨£¨¢ò£©ÓÃÊýѧ¹éÄÉ·¨
£¨¢¡£©µ±n£½1ʱ£¬a1£½1£¬a2£½1.5£¬ÏÔÈ»a1£¼a2£¼2³ÉÁ¢£¬
£¨¢¢£©¼ÙÉèn£½kʱ£¬ak£¼ak£«1£¼2³ÉÁ¢.
ÓÉÓÚº¯Êýf(x)£½£x2£«2x£½£(x£2)2£«2ÔÚ£Û0,2£ÝÉÏΪÔöº¯Êý£¬
Ôòf(ak)£¼f(ak£«1)£¼f(2)¼´ak(4£ak)£¼ak£«1(4£ak£«1)£¼¡Á2¡Á(4£2)
¼´ak£«1£¼ak£«2£¼2³ÉÁ¢.×ÛÉϿɵÃn¡ÊN*ÓÐan£¼an£«1£¼2.¡¡¡¡¡¡¡¡¡¡¡¡£¨9·Ö£©
£¨3£©ÓÉan£«1£½2an£aµÃ2(an£«1£2)£½£(an£2)2£¬¼´(2£an£«1)£½(2£an)2£¬
ÓÖÓÉ£¨2£©Öªan£¼an£«1£¼2£¬¿ÉÖª2£an£«1£¾0£¬2£an£¾0£¬
Ôòlg(2£an£«1)£½2lg(2£an)£lg2£¬¡àlg(2£an£«1)£lg2£½2£Ûlg(2£an)£lg2£Ý
¼´{lg(2£an£«1)£lg2}ΪµÈ±ÈÊýÁУ¬¹«±ÈΪ2£¬Ê×ÏîΪlg(2£a1)£lg2£½£lg2
¹Êlg(2£an)£lg2£½(£lg2)¡¤2n£1£¬¡àan£½2£(n¡ÊN*)ΪËùÇó.¡¡¡¡¡£¨13·Ö£©
ÂÔ
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿