题目内容
【题目】已知函数f(x)=loga(x+b)(其中a,b为常数,且a>0,a≠1)的图象经过点A(﹣2,0),B(1,2).
(1)求f(x)的解析式;
(2)若函数g(x)=( )2x﹣( )x﹣1,x∈[0,+∞),求g(x)的值域.
【答案】
(1)解:∵已知函数f(x)=loga(x+b)(其中a,b为常数,且a>0,a≠1)的图象经过点A(﹣2,0),B(1,2)
∴f(﹣2)=0,f(1)=2
∴loga(b﹣2)=0,loga(1+b)=2
∴a=2,b=3
∴f(x)=log2(x+3)
(2)解:∵
∴
设 ,则t∈(0,1]
∴函数g(x)在 上单调递减,在上单调递增.
∴ 时,g(x)有最小值 ,t=1时,g(x)有最大值﹣1
∴g(x)的值域为
【解析】此题(1)由带入法求解函数解析式,(2)是指数函数与二次函数的复合,转化成二次函数的最值问题,难度不大
练习册系列答案
相关题目
【题目】某研究小组在电脑上进行人工降雨模拟实验,准备用A、B、C三种人工降雨方式分别对甲、乙、丙三地实施人工降雨,其实验统计结果如下
方式 | 实施地点 | 大雨 | 中雨 | 小雨 | 模拟实验次数 |
A | 甲 | 2次 | 6次 | 4次 | 12次 |
B | 乙 | 3次 | 6次 | 3次 | 12次 |
C | 丙 | 2次 | 2次 | 8次 | 12次 |
假定对甲、乙、丙三地实施的人工降雨彼此互不影响,且不考虑洪涝灾害,请根据统计数据:
(1)求甲、乙、丙三地都恰为中雨的概率;
(2)考虑不同地区的干旱程度,当雨量达到理想状态时,能缓解旱情,若甲、丙地需中雨或大雨即达到理想状态,乙地必须是大雨才达到理想状态,记“甲、乙、丙三地中缓解旱情的个数”为随机变量,求的分布列和数学期望.