题目内容
【题目】某地区拟建立一个艺术博物馆,采取竞标的方式从多家建筑公司选取一家建筑公司,经过层层筛选,甲、乙两家建筑公司进入最后的招标.现从建筑设计院聘请专家设计了一个招标方案:两家公司从个招标问题中随机抽取个问题,已知这个招标问题中,甲公司可正确回答其中的道題目,而乙公司能正确回答毎道题目的概率均为,甲、乙两家公司对每题的回答都是相互独立,互不影响的.
(1)求甲、乙两家公司共答对道题目的概率;
(2)请从期望和方差的角度分析,甲、乙两家哪家公司竞标成功的可能性更大?
【答案】(1)(2)甲公司竞标成功的可能性更大.
【解析】试题分析:(1)分两种情况求概率:甲答对道题、乙答对道题;甲答对道题、乙答对道题;其中甲答对道题概率为, 乙答对道题概率为,最后根据概率乘法公式与加法公式求概率,(2)分别求甲、乙公司正确完成面试的题数期望和方差,期望较大、方差较小的公司竞标成功的可能性更大.先确定随机变量可能取法,求出对应概率(甲答对道题概率为, 乙答对道题概率为),利用期望公式及方差公式求期望与方差.
试题解析:(1)由题意可知,所求概率.
(2)设甲公司正确完成面试的题数为,则的取值分别为, , .
, , .
则的分布列为:
.
设乙公司正确完成面试的题为,则取值分别为, , , .
, ,
,
则的分布列为:
.(或,)
.( )
由, 可得,甲公司竞标成功的可能性更大.
【题目】近期中央电视台播出的《中国诗词大会》火遍全国,下面是组委会在选拔赛时随机抽取的100名选手的成绩,按成绩分组,得到的频率分布表如下所示:
组号 | 分组 | 频数 | 频率 |
第1组 | |||
第2组 | ① | ||
第3组 | 20 | ② | |
第4组 | 20 | ||
第5组 | 10 | ||
合计 | 100> |
(1)请先求出频率分布表中①、②位置的相应数据,再完成频率分布直方图(用阴影表示);
(2)为了能选拔出最优秀的选手,组委会决定在笔试成绩高的第3、4、5组中用分层抽样抽取5名选手进入第二轮面试,求第3、4、5组每组各抽取多少名选手进入第二轮面试;
(3)在(2)的前提下,组委会决定在5名选手中随机抽取2名选手接受考官进行面试,求:第4组至少有一名选手被考官面试的概率.