题目内容
【题目】已知抛物线C:的焦点坐标为,点,过点P作直线l交抛物线C于A,B两点,过A,B分别作抛物线C的切线,两切线交于点Q,且两切线分别交x轴于M,N两点,则面积的最小值为( )
A. B. C. D.
【答案】C
【解析】
先求出抛物线的方程,再分别表示出两个切线方程,联立可求得的坐标表示出点到直线的距离,设直线的方程,与抛物线联立,根据韦达定理和求出,利用三角形面积公式表示出三角形面积,即可求出面积的最大值
物线C:的焦点坐标为,
∴,∴,
抛物线C:,
设,,
∵,∴,
过点A的切线方程为,令,得,
过点B的切线方程为,令,得
则两切线的交点为,
由AB过点,设直线方程为,
由,消y可得,
∴,,
∴,
∴,
当时,此时面积最小,最小值为,故选C.
练习册系列答案
相关题目
【题目】2019年末,武汉出现新型冠状病毒(肺炎疫情,并快速席卷我国其他地区,传播速度很快.因这种病毒是以前从未在人体中发现的冠状病毒新毒株,目前没有特异治疗方法.防控难度很大.武汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从2月7日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人.在排查期间,某社区将本社区的排查工作人员分为,两个小组,排查工作期间社区随机抽取了100户已排查户,进行了对排查工作态度是否满意的电话调查,根据调查结果统计后,得到如下的列联表.
是否满意 组别 | 不满意 | 满意 | 合计 |
组 | 16 | 34 | 50 |
组 | 2 | 45 | 50 |
合计 | 21 | 79 | 100 |
(1)分别估计社区居民对组、组两个排查组的工作态度满意的概率;
(2)根据列联表的数据,能否有的把握认为“对社区排查工作态度满意”与“排查工作组别”有关?
附表:
附: