题目内容
设集合W是满足下列两个条件的无穷数列{an}的集合:①
, ②
.其中
,
是与
无关的常数.
(Ⅰ)若{
}是等差数列,
是其前
项的和,
,
,证明:
;
(Ⅱ)设数列{
}的通项为
,且
,求
的取值范围;
(Ⅲ)设数列{
}的各项均为正整数,且
.证明
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233816098749.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233816113579.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233816129552.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233816160400.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233816191277.png)
(Ⅰ)若{
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233816207348.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233816222388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233816191277.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233816269434.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233816378518.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233816394678.png)
(Ⅱ)设数列{
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233816425365.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233816441626.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233816472674.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233816160400.png)
(Ⅲ)设数列{
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233816519320.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233816550629.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233816566457.png)
(Ⅰ)见解析(Ⅱ)M≥7(Ⅲ)见解析
解:(Ⅰ)设等差数列{
}的公差是d,则
,解得
,
所以
(2分)
由
=-1<0
得
适合条件①;
又
所以当n=4或5时,
取得最大值20,即
≤20,适合条件②
综上,
(4分)
(Ⅱ)因为
,所以当n≥3时,
,此时数列{bn}单调递减;当n=1,2时,
,即b1<b2<b3,因此数列{bn}中的最大项是b3=7
所以M≥7 (8分)
(Ⅲ) 假设存在正整数k,使得
成立
由数列{
}的各项均为正整数,可得
,即![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233817096506.png)
因为
,所以![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233817283987.png)
由![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232338172991804.png)
因为![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232338173302233.png)
……………………依次类推,可得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233817346956.png)
设![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232338173921627.png)
这显然与数列{
}的各项均为正整数矛盾!
所以假设不成立,即对于任意n∈N*,都有
成立. ( 14分)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233816207348.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232338166901041.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233816722764.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232338167371217.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232338168622499.png)
得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233816878816.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232338169091192.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233816222388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233816222388.png)
综上,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233816394678.png)
(Ⅱ)因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232338169711130.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233817002596.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233817018604.png)
所以M≥7 (8分)
(Ⅲ) 假设存在正整数k,使得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233817034462.png)
由数列{
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233816519320.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233817080513.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233817096506.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233817268730.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233817283987.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232338172991804.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232338173302233.png)
……………………依次类推,可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233817346956.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232338173921627.png)
这显然与数列{
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233816519320.png)
所以假设不成立,即对于任意n∈N*,都有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233816566457.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目