题目内容
【题目】某校高二年级进行了百科知识大赛,为了了解高二年级900名同学的比赛情况,现在甲、乙两个班级各随机抽取了10名同学的成绩,比赛成绩满分为100分,80分以上可获得二等奖,90分以上可以获得一等奖,已知抽取的两个班学生的成绩(单位:分)数据的茎叶图如图1所示:
(1)比较两组数据的分散程度(只需要给出结论),并求出甲组数据的频率分布直方图如图2中所示的值;
(2)现从两组数据中获奖的学生里分别随机抽取一人接受采访,求被抽中的甲班学生成绩高于乙班学生成绩的概率.
【答案】(1)甲组数据更集中,乙组数据更分散, =0.05, =0.02, =0.01.(2)
【解析】试题分析:(1)根据数据集中程度确定分散程度,利用频率等于频数除以总数得对应区间概率,再除以组距得值;(2)甲班获奖4人,乙班获奖5人,所以总事件数为,其中甲班学生成绩高于乙班学生成绩的事件数有9个(枚举法),最后根据古典概型概率求法求概率
试题解析:(I)由茎叶图可知,甲组数据更集中,乙组数据更分散=0.05, =0.02, =0.01.
(II)由茎叶图知:甲班获奖4人,乙班获奖5人,所以.
练习册系列答案
相关题目