ÌâÄ¿ÄÚÈÝ
1£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÖÐÐÄΪ×ø±êԵ㣬ÀëÐÄÂÊe=$\frac{\sqrt{6}}{3}$£¬A1£¬A2£¬B1£¬B2ÊÇÆäËĸö¶¥µã£¬ÇÒËıßÐÎA1B1A2B2µÄÃæ»ýΪ4$\sqrt{3}$£®£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÊÇ·ñ´æÔÚ¹ýÍÖÔ²CµÄÓÒ½¹µãFÇÒÓëÍÖÔ²CÏཻÓÚM£¬NÁ½µãµÄÖ±Ïßl£¬Ê¹µÃÔÚÖ±Ïßx=3ÉÏ¿ÉÒÔÕÒµ½Ò»µãB£¬Âú×ã¡÷MNBΪÕýÈý½ÇÐΣ¿Èô´æÔÚ£¬Çó³öÖ±ÏßlµÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨¢ñ£©Í¨¹ýÍÖÔ²¶¨ÒåÖ±½Ó¼ÆËã¼´µÃ½áÂÛ£»
£¨¢ò£©ÓÉ£¨I£©¿ÉÖªF£¨2£¬0£©£®·ÖÖ±ÏßlÓëxÖáÊÇ·ñ´¹Ö±Á½ÖÖÇé¿öÌÖÂÛ£¬Ò×Öªµ±Ö±ÏßlÓëxÖᴹֱʱ²»Âú×ãÌâÒ⣻µ±Ö±ÏßlÓëxÖá²»´¹Ö±Ê±£¬ÉèÖ±Ïßl£ºy=k£¨x-2£©£¬ÀûÓÃΤ´ï¶¨Àí¼°Á½µã¼ä¾àÀ빫ʽ¿ÉµÃ|MN|=$\frac{2\sqrt{6}£¨1+{k}^{2}£©}{1+3{k}^{2}}$£¬ÉèMNµÄÖеãΪQ£¬ÀûÓÃ|QB|=$\frac{\sqrt{3}}{2}$|MN|£¬¼ÆËã¼´µÃ½áÂÛ£®
½â´ð ½â£º£¨¢ñ£©ÓÉÒÑÖª¿ÉµÃ£º$\frac{c}{a}$=$\frac{\sqrt{6}}{3}$£¬2ab=4$\sqrt{3}$£¬
¡à1-$\frac{{b}^{2}}{{a}^{2}}$=$\frac{2}{3}$£¬a2b2=12£¬
½âµÃ£ºa2=6£¬b2=2£¬
¡àÍÖÔ²CµÄ·½³ÌΪ£º$\frac{{x}^{2}}{6}+\frac{{y}^{2}}{2}=1$£»
£¨¢ò£©ÓÉ£¨I£©¿ÉÖªF£¨2£¬0£©£®
¢Ùµ±Ö±ÏßlÓëxÖᴹֱʱ£¬M£¨2£¬-$\frac{\sqrt{6}}{3}$£©£¬N£¨2£¬$\frac{\sqrt{6}}{3}$£©£¬B£¨3£¬0£©£¬
´Ëʱ|MN|=$\frac{2\sqrt{6}}{3}$£¬|BF|=1£¬
¡ß$\frac{\sqrt{3}}{2}$|MN|¡Ù|BF|£¬
¡àM¡¢N¡¢B²»Äܹ¹³ÉÕýÈý½ÇÐΣ»
¢Úµ±Ö±ÏßlÓëxÖá²»´¹Ö±Ê±£¬
ÉèÖ±Ïßl£ºy=k£¨x-2£©£¬ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬
ÁªÁ¢Ö±ÏßlÓëÍÖÔ²·½³Ì£¬µÃ£º£¨1+3k2£©x2-12k2x+12k2-6=0£¬
Ò×Öª¡÷£¾0ÇÒx1+x2=$\frac{12{k}^{2}}{1+3{k}^{2}}$£¬x1x2=$\frac{12{k}^{2}-6}{1+3{k}^{2}}$£¬
¡à|MN|=$\sqrt{1+{k}^{2}}$•$\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$
=$\sqrt{1+{k}^{2}}$•$\sqrt{£¨\frac{12{k}^{2}}{1+3{k}^{2}}£©^{2}-4•\frac{1{2k}^{2}-6}{1+3{k}^{2}}}$
=$\sqrt{1+{k}^{2}}$•$\sqrt{\frac{24£¨1+{k}^{2}£©}{£¨1+3{k}^{2}£©^{2}}}$
=$\frac{2\sqrt{6}£¨1+{k}^{2}£©}{1+3{k}^{2}}$£¬
ÉèMNµÄÖеãΪQ£¬ÔòxQ=$\frac{{x}_{1}+{x}_{2}}{2}$=$\frac{6{k}^{2}}{1+3{k}^{2}}$£¬xB=3£¬
QBΪMNµÄÖд¹Ïߣ¬
Ôò|QB|=$\sqrt{1+\frac{1}{{k}^{2}}}$•|xB-xQ|
=$\sqrt{1+\frac{1}{{k}^{2}}}$•£¨3-$\frac{6{k}^{2}}{1+3{k}^{2}}$£©
=$\frac{\sqrt{1+{k}^{2}}}{|k|}$•$\frac{3£¨1+{k}^{2}£©}{1+3{k}^{2}}$
=$\frac{3£¨1+{k}^{2}£©\sqrt{1+{k}^{2}}}{£¨1+3{k}^{2}£©•|k|}$£¬
ÓÉ¡÷MNBΪÕýÈý½ÇÐοÉÖª£º|QB|=$\frac{\sqrt{3}}{2}$|MN|£¬
¡à$\frac{3£¨1+{k}^{2}£©\sqrt{1+{k}^{2}}}{£¨1+3{k}^{2}£©•|k|}$=$\frac{\sqrt{3}}{2}$•$\frac{2\sqrt{6}£¨1+{k}^{2}£©}{1+3{k}^{2}}$£¬
»¯¼òµÃ£ºk=¡À1£¬
¡àÖ±ÏßlµÄ·½³ÌΪ£ºx-y-2=0»òx+y-2=0£®
µãÆÀ ±¾ÌâÊÇÒ»µÀÖ±ÏßÓëԲ׶ÇúÏßµÄ×ÛºÏÌ⣬¿¼²éÔËËãÇó½âÄÜÁ¦£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÄÑÌ⣮
A£® | 1 | B£® | 2 | C£® | -1 | D£® | 0 |
A£® | £¨0£¬1£© | B£® | $£¨0£¬\frac{3}{2}£©$ | C£® | $£¨\frac{2}{3}£¬2£©$ | D£® | $£¨1£¬\frac{3}{2}£©$ |
A£® | M1=M2=M3=M4 | B£® | M1?M2?M3?M4 | C£® | M1⊆M2⊆M3⊆M4 | D£® | M1?M2£¬M2=M3⊆M4 |
A£® | ¹ØÓÚÔµã¶Ô³Æ | B£® | ¹ØÓÚxÖá¶Ô³Æ | C£® | ¹ØÓÚyÖá¶Ô³Æ | D£® | ²»ÊǶԳÆͼÐÎ |