题目内容

12.已知函数f(x)=|x+a|+|x+$\frac{1}{a}$|(a>0)
(Ⅰ)当a=2时,求不等式f(x)>3的解集;
(Ⅱ)证明:$f(m)+f(-\frac{1}{m})≥4$.

分析 (Ⅰ)当a=2时,求不等式即|x+2|+|x+$\frac{1}{2}$|>3,再利用对值的意义求得它的解集.
(Ⅱ)由条件利用绝对值三角不等式、基本不等式,证得要证的结论.

解答 解:(Ⅰ)当a=2时,求不等式f(x)>3,即|x+2|+|x+$\frac{1}{2}$|>3.
而|x+2|+|x+$\frac{1}{2}$|表示数轴上的x对应点到-2、-$\frac{1}{2}$对应点的距离之和,
而0和-3对应点到-$\frac{11}{4}$、$\frac{1}{4}$对应点的距离之和正好等于3,
故不等式f(x)>3的解集为{x|x<-$\frac{11}{4}$,或 x>$\frac{1}{4}$}.
(Ⅱ)证明:∵f(m)+f(-$\frac{1}{m}$)=|m+a|+|m+$\frac{1}{a}$|+|-$\frac{1}{m}$+a||-$\frac{1}{m}$+$\frac{1}{a}$|
=(|m+a|+|-$\frac{1}{m}$+a|)+(|m+$\frac{1}{a}$|+|-$\frac{1}{m}$+$\frac{1}{a}$|)≥2(|m+$\frac{1}{m}$|)=2(|m|+|$\frac{1}{m}$|)≥4,
∴要证得结论成立.

点评 本题主要考查绝对值的意义,绝对值不等式的解法,绝对值三角不等式、基本不等式的应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网