题目内容
已知抛物线y2=4x的焦点为F,过点P(2,0)的直线交抛物线于A(x1,y1)和B(x2,y2)两点.则:(I)y1 y2= ;(Ⅱ)三角形ABF面积的最小值是 .
(I)-8;(Ⅱ).
试题分析:(I)①当斜率不存在时,过点P(2,0)的直线为,此时易知.②当斜率存在时,过点P(2,0)的直线可设为:.因为该直线与抛物线有两个交点,所以.联立方程与化简得:,由韦达定理得.综合①②知.(Ⅱ)易知焦点,①当斜率存在时,,其中是点到直线的距离.即,.在直线上,,,,,,其中,.②当斜率不存在时直线为,此时易知,,,点到直线的距离是1,,综上所述,三角形面积的最小值是.
练习册系列答案
相关题目