题目内容
曲线C上任一点到定点(0,
)的距离等于它到定直线
的距离.
(1)求曲线C的方程;
(2)经过P(1,2)作两条不与坐标轴垂直的直线![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020326404336.png)
分别交曲线C于A、B两点,且
⊥
,设M是AB中点,问是否存在一定点和一定直线,使得M到这个定点的距离与它到定直线的距离相等.若存在,求出这个定点坐标和这条定直线的方程.若不存在,说明理由.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020326388352.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020326388502.png)
(1)求曲线C的方程;
(2)经过P(1,2)作两条不与坐标轴垂直的直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020326404336.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020326420340.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020326435313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020326420340.png)
(1)y=2x2;
(2)M轨迹是抛物线,故存在一定点和一定直线,使得M到定点的距离等于它到定直线的距离。所求的定点为
,定直线方程为y=
.
(2)M轨迹是抛物线,故存在一定点和一定直线,使得M到定点的距离等于它到定直线的距离。所求的定点为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020326482708.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020326498492.png)
试题分析:
思路分析:(1)曲线C上任一点到定点(0,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020326388352.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020326388502.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020326544369.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020326576554.png)
(2)利用“参数法” 得到y=4x2+4x+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020326591368.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020326482708.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020326498492.png)
解:(1)因为,利用抛物线的定义,确定得到y=2x2;
(2)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020326435313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020326435313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020326669377.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020326685969.png)
同理得B点坐标为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240203267001018.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240203267321646.png)
消去k得:y=4x2+4x+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020326591368.png)
M轨迹是抛物线,故存在一定点和一定直线,使得M到定点的距离等于它到定直线的距离。将抛物线方程化为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020326763983.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020326778584.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020326794338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020326825388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020326778584.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020326856362.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020326856362.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020326482708.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020326498492.png)
点评:难题,利用“直接法”可确定得到抛物线方程。利用“参数法”求得抛物线方程,通过研究焦点、准线等,达到确定“存在性”的目的。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目