题目内容

【题目】已知a,b为正实数,函数f(x)=ax3+bx+2x在[0,1]上的最大值为4,则f(x)在[﹣1,0]上的最小值为

【答案】
【解析】∵a,b为正实数,函数f(x)=ax3+bx+2x
∴f(x)在R上是增函数,
∴f(x)在[0,1]上的最大值f(1)=a+b+2=4,
∴a+b=2.
∴f(x)在[﹣1,0]上的最小值f(﹣1)=﹣(a+b)+2﹣1=﹣2+=
∴f(x)在[﹣1,0]上的最小值是
所以答案是:
【考点精析】根据题目的已知条件,利用函数的最大(小)值与导数的相关知识可以得到问题的答案,需要掌握求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网