题目内容
15.(理科)已知数列{an}满足:a1=3,且an+1=2an-1(n∈N•)(1)求数列{an}的通项公式
(2)令bn=$\frac{1}{{a}_{n+1}-{a}_{n}}$(n∈N•),求数列{bn}的前n项和Sn.
分析 (1)通过对an+1=2an-1(n∈N•)变形可知数列{an-1}是以首项、公比均为2的等比数列,进而计算可得结论;
(2)通过an=2n+1可知bn=$\frac{1}{{2}^{n}}$(n∈N•),进而利用等比数列的求和公式计算即可.
解答 解:(1)∵an+1=2an-1(n∈N•),
∴an+1-1=2(an-1),
又∵a1-1=3-1=2,
∴an-1=2•2n-1=2n,
∴数列{an}的通项公式an=2n+1;
(2)∵an=2n+1,
∴bn=$\frac{1}{{a}_{n+1}-{a}_{n}}$=$\frac{1}{{(2}^{n+1}+1)-({2}^{n}+1)}$=$\frac{1}{{2}^{n}}$(n∈N•),
∴数列{bn}是以首项、公比均为$\frac{1}{2}$的等比数列,
∴Sn=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$=1-$\frac{1}{{2}^{n}}$.
点评 本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.
练习册系列答案
相关题目
6.已知数列{an}中,an=n(n-1),则56是这个数列的( )
A. | 第9项 | B. | 第8项 | C. | 第7项 | D. | 第6项 |
3.一个几何体的三视图如图所示,这个几何体的全面积为( )
A. | 12πcm2 | B. | 9πcm2 | C. | 6πcm2 | D. | 5πcm2 |
7.在三棱锥S-ABC中,AB⊥BC,AB=BC=$\sqrt{2}$,SA=SC=2.AC的中点为M,∠SMB的余弦值为$\frac{\sqrt{3}}{3}$,若S、A、B、C都在同一球面上,则该球的表面积为( )
A. | $\frac{3π}{2}$ | B. | 2π | C. | 6π | D. | $\sqrt{6}$π |
8.若函数f(x)=ax-lnx在区间(2,+∞)单调递增,则a的取值范围是( )
A. | [$\frac{1}{2}$,+∞) | B. | (-∞,-1] | C. | (-∞,-2] | D. | [1,+∞) |