题目内容
【题目】已知为定义在上的奇函数,当时,有,且当时,,下列命题正确的是( )
A.B.函数在定义域上是周期为的函数
C.直线与函数的图象有个交点D.函数的值域为
【答案】A
【解析】
推导出当时,,结合题中等式得出,可判断出A选项的正误;利用特殊值法可判断B选项的正误;作出函数在区间上的图象,利用数形结合思想可判断C选项的正误;求出函数在上的值域,利用奇函数的性质可得出函数的值域,可判断出D选项的正误.
函数是上的奇函数,,由题意可得,
当时,,,A选项正确;
当时,,则,,,
则函数不是上周期为的函数,B选项错误;
若为奇数时,,
若为偶数,则,即当时,,
当时,,若,且当时,,
,
当时,则,,
当时,,则,
所以,函数在上的值域为,
由奇函数的性质可知,函数在上的值域为,
由此可知,函数在上的值域为,D选项错误;
如下图所示:
由图象可知,当时,函数与函数的图象只有一个交点,
当或时,,此时,函数与函数没有交点,
则函数与函数有且只有一个交点,C选项错误.
故选:A.
练习册系列答案
相关题目