题目内容
【题目】如图,已知四边形为等腰梯形,为正方形,平面平面,,.
(1)求证:平面平面;
(2)点为线段上一动点,求与平面所成角正弦值的取值范围.
【答案】(1)证明见解析(2)
【解析】
(1)利用等腰梯形的性质证得,由面面垂直的性质定理证得平面,由此证得平面平面.
(2)建立空间直角坐标系,设出的长,利用直线的方向向量和平面的法向量,求得与平面所成角正弦值的表达式,进而求得与平面所成角正弦值的取值范围.
在等腰梯形中,, ,
,. 即,.
又平面平面,平面平面平面,
平面
平面,
平面平面
(2)解:由(1)知,分别以直线为轴,轴,轴建立空间直角坐标系,
设,
则,,
设平面的法向量为
,即
令,则,
平面的一个法向量为.
设与平面所成角为,
当时取最小值,当时取最大值
故与平面所成角正弦值的取值范围为.
【题目】为了节能减排,发展低碳经济,我国政府从2001年起就通过相关政策推动新能源汽车产业发展.下面的图表反映了该产业发展的相关信息:
中国新能源汽车产销情况一览表 | ||||
新能源汽车生产情况 | 新能源汽车销售情况 | |||
产品(万辆) | 比上年同期 | 销量(万辆) | 比上年同期 | |
2018年3月 | 6.8 | 105 | 6.8 | 117.4 |
4月 | 8.1 | 117.7 | 8.2 | 138.4 |
5月 | 9.6 | 85.6 | 10.2 | 125.6 |
6月 | 8.6 | 31.7 | 8.4 | 42.9 |
7月 | 9 | 53.6 | 8.4 | 47.7 |
8月 | 9.9 | 39 | 10.1 | 49.5 |
9月 | 12.7 | 64.4 | 12.1 | 54.8 |
10月 | 14.6 | 58.1 | 13.8 | 51 |
11月 | 17.3 | 36.9 | 16.9 | 37.6 |
1-12月 | 127 | 59.9 | 125.6 | 61.7 |
2019年1月 | 9.1 | 113 | 9.6 | 138 |
2月 | 5.9 | 50.9 | 5.3 | 53.6 |
根据上述图表信息,下列结论错误的是( )
A.2017年3月份我国新能源汽车的产量不超过万辆
B.2017年我国新能源汽车总销量超过万辆
C.2018年8月份我国新能源汽车的销量高于产量
D.2019年1月份我国插电式混合动力汽车的销量低于万辆
【题目】近年来,共享单车已经悄然进入了广大市民的日常生活,并慢慢改变了人们的出行方式.为了更好地服务民众,某共享单车公司在其官方中设置了用户评价反馈系统,以了解用户对车辆状况和优惠活动的评价,现从评价系统中选出条较为详细的评价信息进行统计,车辆状况和优惠活动评价的列联表如下:
对优惠活动好评 | 对优惠活动不满意 | 合计 | |
对车辆状况好评 | |||
对车辆状况不满意 | |||
合计 |
(1)能否在犯错误的概率不超过的前提下认为优惠活动好评与车辆状况好评之间有关系?
(2)为了回馈用户,公司通过向用户随机派送每张的面额为元,元,元的三种骑行券,用户每次使用扫码用车后,都可获得一张骑行券,用户骑行一-次获得元券,获得元券的概率分别是,且各次获取骑行券的结果相互独立.若某用户一天使用了两次该公司的共享单车,记该用户当天获得的骑行券面额之和为,求随机变量的分布列和数学期望.
附:下边的临界值表仅供参考:
(参考公式:,其中)