题目内容
【题目】设为给定的不小于的正整数,考察个不同的正整数,,,构成的集合,若集合的任何两个不同的非空子集所含元素的总和均不相等,则称集合为“差异集合”.
(1)分别判断集合,集合是否是“差异集合”;(只需写出结论)
(2)设集合是“差异集合”,记,求证:数列的前项和;
(3)设集合是“差异集合”,求的最大值.
【答案】(1)集合不是,集合是;(2)见解析;(3)最大值为
【解析】
(1)利用定义直接判断
(2)利用定义得,则
即可证明
(3)不妨设,变形
结合, 即可证明
(1)集合不是,因为,即子集与子集元素之和相等;
集合是,因为集合的任何两个不同的非空子集所含元素的总和均不相等.
(2)由集合是“差异集合”知:的个非空子集元素和为互不相等的个正整数,
于是,所以
(3)不妨设,考虑
而,所以
当时,;
综上,的最大值为.
【题目】近年来,共享单车已经悄然进入了广大市民的日常生活,并慢慢改变了人们的出行方式.为了更好地服务民众,某共享单车公司在其官方中设置了用户评价反馈系统,以了解用户对车辆状况和优惠活动的评价,现从评价系统中选出条较为详细的评价信息进行统计,车辆状况和优惠活动评价的列联表如下:
对优惠活动好评 | 对优惠活动不满意 | 合计 | |
对车辆状况好评 | |||
对车辆状况不满意 | |||
合计 |
(1)能否在犯错误的概率不超过的前提下认为优惠活动好评与车辆状况好评之间有关系?
(2)为了回馈用户,公司通过向用户随机派送每张的面额为元,元,元的三种骑行券,用户每次使用扫码用车后,都可获得一张骑行券,用户骑行一-次获得元券,获得元券的概率分别是,且各次获取骑行券的结果相互独立.若某用户一天使用了两次该公司的共享单车,记该用户当天获得的骑行券面额之和为,求随机变量的分布列和数学期望.
附:下边的临界值表仅供参考:
(参考公式:,其中)