题目内容

【题目】已知等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn,a1=﹣1,b1=1,a2+b2=2.

(1)若a3+b3=5,求{bn}的通项公式;

(2)若T3=21,求S3

【答案】(1);(2)21

【解析】试题分析: 设等差数列的公差为,等比数列的公比为,运用等差数列和等比数列的通项公式,列方程解方程可得,即可得到所求通项公式;

运用等比数列的求和公式,解方程可得公比,再由等差数列的通项公式和求和,计算即可得答案。

解析:(1)设等差数列{an}的公差为d,等比数列{bn}的公比为q,

a1=﹣1,b1=1,a2+b2=2,a3+b3=5,可得﹣1+d+q=2,﹣1+2d+q2=5,

解得d=1,q=2或d=3,q=0(舍去),

则{bn}的通项公式为bn=2n﹣1,n∈N*;

(2)b1=1,T3=21,可得1+q+q2=21,解得q=4或﹣5,

当q=4时,b2=4,a2=2﹣4=﹣2,

d=﹣2﹣(﹣1)=﹣1,S3=﹣1﹣2﹣3=﹣6;

当q=﹣5时,b2=﹣5,a2=2﹣(﹣5)=7,

d=7﹣(﹣1)=8,S3=﹣1+7+15=21.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网