题目内容
3.如果下边程序执行后输出的结果是132,那么程序中UNTIL后面的“条件”应为i<11(或i≤10).分析 先根据输出的结果推出循环体执行的次数,再根据s=1×12×11=132得到程序中UNTIL后面的“条件”.
解答 解:因为输出的结果是132,即s=1×12×11,需执行2次,
则程序中UNTIL后面的“条件”应为i<11(或i≤10).
故答案为:i<11(或i≤10).
点评 本题主要考查了直到型循环语句,语句的识别问题是一个逆向性思维,一般认为学习是从算法步骤(自然语言)至程序框图,再到算法语言(程序).如果将程序摆在我们的面前时,从识别逐个语句,整体把握,概括程序的功能,属于基础题.
练习册系列答案
相关题目
13.如图所示的程序框图,若输出的S是62,则①可以为( )
A. | n≤3? | B. | n≤4? | C. | n≤5? | D. | n≤6? |
14.假设关于某设备的使用年限x和所支出的维修费用y(万元)有如下的统计资料:
若由资料知y对x呈线性相关关系.
(1)请画出上表数据的散点图;
(2)请根据最小二乘法求出线性回归方程$\widehat{y}$=bx+a的回归系数a,b;$b=\frac{\sum _{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum _{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}},a=\overline{y}-b\overline{x}$
(3)估计使用年限为10年时,维修费用是多少?
使用年限x | 2 | 3 | 4 | 5 | 6 |
维修费用y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)请画出上表数据的散点图;
(2)请根据最小二乘法求出线性回归方程$\widehat{y}$=bx+a的回归系数a,b;$b=\frac{\sum _{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum _{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}},a=\overline{y}-b\overline{x}$
(3)估计使用年限为10年时,维修费用是多少?
18.若角α的终边经过点$(\sqrt{5},-2)$,则sinα等于多少( )
A. | $\frac{2}{3}$ | B. | $\frac{{\sqrt{5}}}{3}$ | C. | $-\frac{2}{3}$ | D. | $-\frac{{\sqrt{5}}}{3}$ |
15.如果椭圆的两焦点为F1(-1,0)和F2(1,0),P是椭圆上的一点,且|PF1|、|F1F2|、|PF2|成等差数列,那么椭圆的方程是( )
A. | $\frac{x^2}{3}+\frac{y^2}{4}$=1 | B. | $\frac{x^2}{4}+\frac{y^2}{3}$=1 | C. | $\frac{x^2}{16}+\frac{y^2}{9}$=1 | D. | $\frac{x^2}{16}+\frac{y^2}{12}$=1 |