题目内容
【题目】已知A,B,C是椭圆W: 上的三个点,O是坐标原点.
(1)当点B是W的右顶点,且四边形OABC为菱形时,求此菱形的面积;
(2)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由.
【答案】
(1)解:∵四边形OABC为菱形,B是椭圆的右顶点(2,0)
∴直线AC是BO的垂直平分线,可得AC方程为x=1
设A(1,t),得 ,解之得t= (舍负)
∴A的坐标为(1, ),同理可得C的坐标为(1,﹣ )
因此,|AC|= ,可得菱形OABC的面积为S= |AC||B0|= ;
(2)解:∵四边形OABC为菱形,∴|OA|=|OC|,
设|OA|=|OC|=r(r>1),得A、C两点是圆x2+y2=r2
与椭圆W: 的公共点,解之得 =r2﹣1
设A、C两点横坐标分别为x1、x2,可得A、C两点的横坐标满足
x1=x2= ,或x1= 且x2=﹣ ,
①当x1=x2= 时,可得若四边形OABC为菱形,则B点必定是右顶点(2,0);
②若x1= 且x2=﹣ ,则x1+x2=0,
可得AC的中点必定是原点O,因此A、O、C共线,可得不存在满足条件的菱形OABC
综上所述,可得当点B不是W的顶点时,四边形OABC不可能为菱形.
【解析】(1)根据B的坐标为(2,0)且AC是OB的垂直平分线,结合椭圆方程算出A、C两点的坐标,从而得到线段AC的长等于 .再结合OB的长为2并利用菱形的面积公式,即可算出此时菱形OABC的面积;(2)若四边形OABC为菱形,根据|OA|=|OC|与椭圆的方程联解,算出A、C的横坐标满足 =r2﹣1,从而得到A、C的横坐标相等或互为相反数.再分两种情况加以讨论,即可得到当点B不是W的顶点时,四边形OABC不可能为菱形.
【题目】某县经济最近十年稳定发展,经济总量逐年上升,下表是给出的部分统计数据:
序号 | 2 | 3 | 4 | 5 | |
年份 | 2008 | 2010 | 2012 | 2014 | 2016 |
经济总量(亿元) | 236 | 246 | 257 | 275 | 286 |
(1)如上表所示,记序号为,请直接写出与的关系式;
(2)利用所给数据求经济总量与年份之间的回归直线方程;
(3)利用(2)中所求出的直线方程预测该县2018年的经济总量.
附:对于一组数据,
其回归直线的斜率和截距的最小二乘估计分别为:
,.