题目内容
10.在高台跳水运动中,ts时运动员相对于水面的高度(单位:m)是h(t)=-4.9t2+6.5t+10,则高台跳水运动员在t=0.5s时的瞬时速度1.6m/s.分析 根据导数的几何意义进行求解即可.
解答 解函数的导数h′(t)=-9.8t+6.5,
在t=0.5s时的瞬时速度为h′(0.5)=-9.8×0.5+6.5=1.6m/s,
故答案为:1.6.
点评 本题主要考查导数的物理意义,求函数的导数是解决本题的关键.
练习册系列答案
相关题目
1.下面各命题中,正确的是( )
A. | 过平面外一点作与这个平面垂直的平面有且只有一个 | |
B. | 若两条直线与一个平面所成的角相等,则这两条直线平行 | |
C. | 若一个平面内有无数条直线与另一个平面平行,则这两个平面平行 | |
D. | 若两个平面平行,则其中一个平面内的所有直线都与另一个平面平行 |
18.已知不等式组$\left\{\begin{array}{l}x+y≥4\\ x-y≥-2\\ x≤2\end{array}\right.$表示的平面区域为D,点O(0,0),A(1,0).若点M是D上的动点,则$\frac{{\overrightarrow{OA}•\overrightarrow{OM}}}{{|{\overrightarrow{OM}}|}}$的最小值是( )
A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{{\sqrt{5}}}{5}$ | C. | $\frac{{\sqrt{10}}}{10}$ | D. | $\frac{{3\sqrt{10}}}{10}$ |
5.sin$\frac{20π}{3}$的值为( )
A. | $\frac{{\sqrt{3}}}{2}$ | B. | -$\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
15.设四边形ABCD为平行四边形,|$\overrightarrow{AB}$|=6,|$\overrightarrow{AD}$|=4,则$\overrightarrow{AC}•\overrightarrow{DB}$=( )
A. | 10 | B. | 15 | C. | 20 | D. | 25 |
19.已知f(x)=x3-6x2+9x+2,f′(x)是f(x)的导数,f(x)和f′(x)单调性相同的区间是( )
A. | [1,2]∪[3,+∞) | B. | [1,2]和[3,+∞) | C. | (-∞,2] | D. | [2,+∞) |
18.设数列{an}是首项为a1、公差为1的等差数列,Sn为其前n项和,若S1,S2,S4成等比数列,则a1=( )
A. | 2 | B. | $\frac{1}{2}$ | C. | -2 | D. | -$\frac{1}{2}$ |