题目内容

【题目】在四棱锥中,底面是直角梯形, 平面平面

Ⅰ)求证: 平面

Ⅱ)求平面和平面所成二面角(小于)的大小.

Ⅲ)在棱上是否存在点使得平面?若存在,求的值;若不存在,请说明理由.

【答案】见解析的中点

【解析】试题分析:

(Ⅰ)证明AB⊥平面PBC,利用面面垂直的性质,根据AB⊥BC,平面PBC⊥平面ABCD,即可得证;

BC的中点O,连接PO,证明PO⊥平面ABCD,以O为原点,OB所在的直线为x轴,在平面ABCD内过O垂直于BC的直线为y轴,OP所在的直线为z轴建立空间直角坐标系O-xyz,求出平面PAD的法向量平面BCP的一个法向量

利用向量的夹角公式,即可求得平面ADP和平面BCP所成的二面角;(Ⅲ)在棱PB上存在点M使得CM∥平面PAD,此时证明平面MNC∥平面PAD,可得∥平面PAD

试题解析:

的中点,连接

,面

为原点, 所在的直线为轴,在平面内过且垂直于的直线为轴, 所在的直线为轴建立空间直角坐标系,如图所示,

不妨设,由

设平面的法向量为

,则

取平面的一个法向量

∴面和面的二面角(锐角)的大小为

在棱上存在一点使得,此时

理由如下: 的中点,

的中点,连接

∴四边形是平行四边形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网