题目内容

【题目】如图,P是平行四边形ABCD所在平面外一点,E是PD的中点.
(1)求证:PB∥平面EAC;
(2)若M是CD上异于C、D的点.连结PM交CE于G,连结BM交AC于H,求证:GH∥PB.

【答案】
(1)证明:

连结BD,交AC于O,

连结EO,则O是BD的中点,

又E是PD的中点,∴PB∥EO,

∵PB平面EAC,EO平面EAC,

∴PB∥平面EAC


(2)证明:由(1)知PB∥平面EAC,

又平面PBM∩平面EAC=GH,

∴根据线面平行的性质定理得:GH∥PB


【解析】(1)连结BD,交AC于O,连结EO,则PB∥EO,由此能证明PB∥平面EAC.(2)由PB∥平面EAC,根据线面平行的性质定理能证明GH∥PB.
【考点精析】认真审题,首先需要了解空间中直线与直线之间的位置关系(相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点),还要掌握直线与平面平行的判定(平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行)的相关知识才是答题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网