题目内容

【题目】如图,ABCD为正方形,过A作线段SA⊥平面ABCD,过A作与SC垂直的平面交SB,SC,SD于E,K,H,求证:E是点A在直线SB上的射影.

【答案】证明: SA⊥BC,又∵AB⊥BC,SA∩AB=A,
∴BC⊥平面SAB.又AE平面SAB,∴BC⊥AE,∵SC⊥平面AHKE,AE平面AHKE,∴SC⊥AE. 又BC∩SC=C,∴AE⊥平面SBC,∵SB平面SBC,∴AE⊥SB,即E为A在SB上的射影
【解析】结合图形,要证明E是点A在直线SB上的射影,也就是要证明AE⊥SB于E,通过证明AE⊥平面SBC来实现。
【考点精析】本题主要考查了直线与平面垂直的判定和直线与平面垂直的性质的相关知识点,需要掌握一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想;垂直于同一个平面的两条直线平行才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网