题目内容
【题目】已知 为△ 所在平面外一点,且 , , 两两垂直,则下列结论:① ;② ;③ ;④ .其中正确的是( )
A.①②③
B.①②④
C.②③④
D.①②③④
【答案】A
【解析】由 , , 两两垂直可得 平面 , 平面 , 平面 ,所以 , , ,①②③正确.④错误,假设 ,由 平面 得 ,又 ,所以 平面 ,又 平面 ,这与过一点有且只有一条直线与已知平面垂直矛盾.
故答案为:A.
由 P A , P B , P C 两两垂直可得 P A ⊥ 平面 P B C , P B ⊥ 平面 P A C , P C ⊥ 平面 P A B,进一步得到线线垂直,从而①②③正确.④错误。
练习册系列答案
相关题目
【题目】2016年高一新生入学后,为了了解新生学业水平,某区对新生进行了水平测试,随机抽取了50名新生的成绩,其相关数据统计如下:
分数段 | 频数 | 选择题得分24分以上(含24分) |
[40,50) | 5 | 2 |
[50,60) | 10 | 4 |
[60,70) | 15 | 12 |
[70,80) | 10 | 6 |
[80,90) | 5 | 4 |
[90,100) | 5 | 5 |
(Ⅰ)若从分数在[70,80),[80,90)的被调查的新生中各随机选取2人进行追踪调查,求恰好有2名新生选择题得分不足24分的概率;
(Ⅱ)在(Ⅰ)的条件下,记选中的4名新生中选择题得分不足24分的人数为X,求随机变量X的分布列和数学期望.