题目内容
【题目】已知函数f(x)=alnx﹣(a+2)x+x2 .
(1)求函数f(x)的单调区间;
(2)若对于任意a∈[4,10],x1 , x2∈[1,2],恒有| |≤ 成立,试求λ的取值范围.
【答案】
(1)解:函数的定义域是(0,+∞),
f′(x)= ﹣(a+2)+2x= ,
a≤0时,函数在(0,1)递减,在(1,+∞)递增,
0<a<2时,函数在(0, ),(1,+∞)递增,在( ,1)递减,
a=2时,函数在(0,+∞)递增,
a>2时,函数在(0,1),( ,+∞)递增,在(1, )递减
(2)解:| |≤ 成立,
即|f(x1)﹣f(x2)|≤λ| ﹣ |恒成立,
不妨设x2>x1,∵a∈[4,10]时,f(x)在[1,2]递减,
则f(x1)﹣f(x2)≤λ( ﹣ ),得f(x1)﹣ ≤f(x2)﹣ ,
设g(x)=f(x)﹣ =alnx﹣(a+2)x+x2﹣ ,
故对于任意的a∈[4,10],x1,x2∈[1,2],x2>x1,g(x1)≤g(x2)恒成立,
故g(x)=f(x)﹣ 在[1,2]递增,
g′(x)= ≥0在x∈[1,2]恒成立,
故2x3﹣(a+2)x2+ax+λ≥0在x∈[1,2]恒成立,
即a(﹣x2+x)+2x3﹣2x2+λ≥0在x∈[1,2]恒成立,
∵x∈[1,2]时,﹣x2+x≤0,
∴只需10(﹣x2+x)+2x3﹣2x2+λ≥0在x∈[1,2]恒成立,
即2x3﹣12x2+10x+λ≥0在x∈[1,2]恒成立,
设h(x)=2x3﹣12x2+10x+λ,则h(2)=﹣12+λ≥0,
故λ≥12,
故实数λ的范围是[12,+∞)
【解析】(1)求出函数的导数,通过讨论a的范围求出函数的单调区间即可;(2)问题转化为2x3﹣(a+2)x2+ax+λ≥0在x∈[1,2]恒成立,根据x的范围得2x3﹣12x2+10x+λ≥0在x∈[1,2]恒成立,设h(x)=2x3﹣12x2+10x+λ,根据函数的性质求出λ的范围即可.
【考点精析】掌握利用导数研究函数的单调性是解答本题的根本,需要知道一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.
【题目】某冷饮店为了解气温变化对其营业额的影响,随机记录了该店1月份销售淡季中5天的日营业额y(单位:百元)与该地当日最低气温x(单位:℃)的数据,如下表所示:
x | 3 | 6 | 7 | 9 | 10 |
y | 12 | 10 | 8 | 8 | 7 |
(Ⅰ)判定y与x之间是正相关还是负相关,并求回归方程 = x+
(Ⅱ)若该地1月份某天的最低气温为6℃,预测该店当日的营业额
(参考公式: = = , = ﹣ ).