题目内容
【题目】已知函数f(x)= x3+ax2﹣bx(a,b∈R),若y=f(x)图象上的点(1,﹣ )处的切线斜率为﹣4,
(1)求f(x)的表达式.
(2)求y=f(x)在区间[﹣3,6]上的最值.
【答案】
(1)解:∵f(x)= x3+ax2﹣bx,
∴f′(x)=x2+2ax﹣b,
∵y=f(x)图象上的点(1,﹣ )处的切线斜率为﹣4,
∴f′(1)=﹣4,f(1)=﹣ ,
∴1+2a﹣b=﹣4.①, +a﹣b=- ,即a﹣b+4=0.②
由①②解得a=﹣1,b=3,
∴f(x)= x3﹣x2﹣3x
(2)解:∵f(x)= x3﹣x2﹣3x.
∴f′(x)=x2﹣2x﹣3=(x﹣3)(x+1).
令f′(x)=0,解得x=﹣1或3.
∴在x∈[﹣3,6]上,当x变化时,f′(x),f(x)的变化情况如下表:
x | ﹣3 | (﹣3,﹣1) | ﹣1 | (﹣1,3) | 3 | (3,6) | 6 |
f′(x) | + | 0 | ﹣ | 0 | + | ||
f(x) | ﹣9 | 单调递增↗ | 极大值 | 单调递减↘ | 极小值﹣9 | 单调递增↗ | 18 |
∴当x∈[﹣3,6]时,f(x)max=f(6)=18,
f(x)min=f(3)=f(﹣3)=﹣9
【解析】(1)根据导数的几何意义,建立方程关系即可求f(x)的表达式.(2)求函数的导数,利用函数的单调性和最值与导数之间的关系,即可求y=f(x)在区间[﹣3,6]上的最值.
【考点精析】本题主要考查了函数的最大(小)值与导数的相关知识点,需要掌握求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值才能正确解答此题.
【题目】某批次的某种灯泡个,对其寿命进行追踪调查,将结果列成频率分布表如下,根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于天的灯泡是优等品,寿命小于天的灯泡是次品,其余的灯泡是正品.
寿命 (天) | 频数 | 频率 |
合计 |
(1)根据频率分布表中的数据,写出的值;
(2)某人从这个灯泡中随机地购买了个,求此灯泡恰好不是次品的概率;
(3)某人从这批灯泡中随机地购买了个,如果这个灯泡的等级情況恰好与按三个等级分层抽样所得的结果相同,求的最小值.