题目内容
【题目】在平面几何中有如下结论:正三角形ABC的内切圆面积为S1 , 外接圆面积为S2 , 则 ,推广到空间可以得到类似结论;已知正四面体P﹣ABC的内切球体积为V1 , 外接球体积为V2 , 则 = .
【答案】
【解析】解:从平面图形类比空间图形,从二维类比三维, 可得如下结论:正四面体的外接球和内切球的半径之比是 3:1
故正四面体P﹣ABC的内切球体积为V1 , 外接球体积为V2之比等于 = = .
所以答案是: .
【考点精析】根据题目的已知条件,利用类比推理的相关知识可以得到问题的答案,需要掌握根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理.
练习册系列答案
相关题目