题目内容

【题目】小张在淘宝网上开一家商店,他以10元每条的价格购进某品牌积压围巾2000条.定价前,小张先搜索了淘宝网上的其它网店,发现:A商店以30元每条的价格销售,平均每日销售量为10条;B商店以25元每条的价格销售,平均每日销售量为20条.假定这种围巾的销售量t(条)是售价x(元)(x∈Z+)的一次函数,且各个商店间的售价、销售量等方面不会互相影响.
(1)试写出围巾销售每日的毛利润y(元)关于售价x(元)(x∈Z+)的函数关系式(不必写出定义域),并帮助小张定价,使得每日的毛利润最高(每日的毛利润为每日卖出商品的进货价与销售价之间的差价);
(2)考虑到这批围巾的管理、仓储等费用为200元/天(只要围巾没有售完,均须支付200元/天,管理、仓储等费用与围巾数量无关),试问小张应该如何定价,使这批围巾的总利润最高(总利润=总毛利润﹣总管理、仓储等费用)?

【答案】
(1)解:设t=kx+b,∴ ,解得k=﹣2,b=70,∴t=70﹣2x.

y=(x﹣10)t=(x﹣10)(70﹣2x)=﹣2x2+90x﹣700,

,∴围巾定价为22元或23元时,每日的利润最高


(2)解:设售价x(元)时总利润为z(元),

∴z=2000(x﹣10)﹣200

=2000(25﹣((35﹣x)+ ))≤2000(25﹣ )=10000元.

当35﹣x= 时,即x=25时,取得等号.

∴小张的这批围巾定价为25元时,这批围巾的总利润最高


【解析】(1)根据题意先求出销售量t与售价x之间的关系式,再利用毛利润为每日卖出商品的进货价与销售价之间的差价,确定毛利润y(元)关于售价x(元)(x∈Z+)的函数关系式,利用二次函数求最值的方法可求;(2)根据总利润=总毛利润﹣总管理、仓储等费用,构建函数关系,利用基本不等式可求最值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网