题目内容
4.已知集合M={x|0<x<3},N={x|log2x>1},则M∩N=( )A. | ∅ | B. | {x|0<x<3} | C. | {x|1<x<3} | D. | {x|2<x<3} |
分析 求出N中不等式的解集确定出N,求出M与N的交集即可.
解答 解:由N中不等式变形得:log2x>1=log22,即x>2,
∴N={x|x>2},
∵M={x|0<x<3},
∴M∩N={x|2<x<3},
故选:D.
点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关题目
16.高一新生军训时,经过两天的打靶训练,甲每射击10次可以击中9次,乙每射击9次可以击中8次.甲、乙两人射击同一目标(甲、乙两人互不影响),现各射击一次,目标被击中的概率为( )
A. | $\frac{9}{10}$ | B. | $\frac{4}{5}$ | C. | $\frac{8}{9}$ | D. | $\frac{89}{90}$ |
12.一个袋内装有大小相同的6个白球和5个黑球,从中随意抽取2个球,抽到白球、黑球各1个的概率为( )
A. | $\frac{6}{11}$ | B. | $\frac{1}{5}$ | C. | $\frac{2}{11}$ | D. | $\frac{1}{10}$ |
14.设函数g(x)=3-log2x,f(x)=$\left\{\begin{array}{l}{{2}^{[g(x)-1]}+x-3,x>g(x)}\\{{2}^{[4-g(x)]}-{x}^{2},x≤g(x)}\end{array}\right.$,则f(x)的值域是( )
A. | [0,+∞) | B. | (0,+∞) | C. | (-∞,+∞) | D. | [0,2013] |