题目内容
过点T(2,0)的直线
交抛物线y2=4x于A、B两点.
(I)若直线l交y轴于点M,且
当m变化时,求
的值;
(II)设A、B在直线
上的射影为D、E,连结AE、BD相交于一点N,则当m变化时,点N为定点的充要条件是n=-2.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130937150455.gif)
(I)若直线l交y轴于点M,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130937181730.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130937197373.gif)
(II)设A、B在直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130937212272.gif)
(1)-1(2)同解析
(I)设![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130937228621.gif)
由![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130937244976.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130937384600.gif)
又![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231309374461541.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130937462806.gif)
同理,由![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130937462826.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231309374931604.gif)
(II)方法一:当m=0时,A(2,2
),B(2,-
),D(n,2
),
E(n,-2
).
∵ABED为矩形,∴直线AE、BD的交点N的坐标为(![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130937680475.gif)
当![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231309377271785.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231309377432505.gif)
同理,对
、
进行类似计算也得(*)式
即n=-2时,N为定点(0,0).
反之,当N为定点,则由(*)式等于0,得n=-2.
方法二:首先n=-2时,则D(-2,y1),A(![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130937805876.gif)
①
②
①-②得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231309379921433.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231309380081845.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130938039572.gif)
反之,若N为定点N(0,0),设此时![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130938055611.gif)
则![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130938070834.gif)
由D、N、B三点共线,
③
同理E、N、A三点共线,
④
③+④得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130938117803.gif)
即-16m+8m-4mn=0,m(n+2)=0.
故对任意的m都有n=-2.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130937228621.gif)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130937244976.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130937384600.gif)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231309374461541.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130937462806.gif)
同理,由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130937462826.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231309374931604.gif)
(II)方法一:当m=0时,A(2,2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130937618225.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130937634254.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130937618225.gif)
E(n,-2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130937618225.gif)
∵ABED为矩形,∴直线AE、BD的交点N的坐标为(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130937680475.gif)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231309377271785.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231309377432505.gif)
同理,对
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130937758258.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130937758261.gif)
即n=-2时,N为定点(0,0).
反之,当N为定点,则由(*)式等于0,得n=-2.
方法二:首先n=-2时,则D(-2,y1),A(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130937805876.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130937821813.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130937961820.gif)
①-②得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231309379921433.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231309380081845.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130938039572.gif)
反之,若N为定点N(0,0),设此时
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130938055611.gif)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130938070834.gif)
由D、N、B三点共线,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130938086620.gif)
同理E、N、A三点共线,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130938102619.gif)
③+④得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130938117803.gif)
即-16m+8m-4mn=0,m(n+2)=0.
故对任意的m都有n=-2.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目