题目内容
2.给出下列命题:①小于90°的角是第一象限角;
②函数f(x)=2sinx•cosx是最小正周期为π的奇函数;
③若α,β∈[-$\frac{π}{2}$,$\frac{π}{2}$],且α>β,则sinα>sinβ;
④函数y=tanx在其整个定义域内是增函数.
其中正确的命题的序号是②③(注:把你认为正确的命题的序号都填上)
分析 根据三角函数的图象及性质进行判断即可.
解答 解:①0°<90°,但不在第一象限,故①错误;
②f(x)=2sinxcosx=sin2x,是奇函数,T=π,故②正确;
③函数y=sinx在[-$\frac{π}{2}$,$\frac{π}{2}$]上递增,若α>β,则sinα>sinβ,故③正确;
④函数y=tanx在(kπ-$\frac{π}{2}$,kπ+$\frac{π}{2}$)内是增函数,故④错误;
故答案为:②③.
点评 本题考查了三角函数的性质问题,熟练掌握其定义域,单调性,奇偶性是解题的关键,本题是一道基础题.
练习册系列答案
相关题目
17.设a=0.23,b=log20.3,c=log0.32,则( )
A. | b<a<c | B. | b<c<a | C. | c<b<a | D. | a<b<c |
7.已知直线ax+y+1=0与(a+2)x-3y+1=0互相垂直,则实数a等于( )
A. | -3或1 | B. | 1或3 | C. | -1或-3 | D. | -1或3 |